
Prime Computer, Inc.

DOC5039-184L
Cobol 74
Reference Guide
Revision 18.4

* t f uu

c§> s '
h ■

I I T l .

*1

! t ^ ^ ; :

? ^

,. l

'ClI
%c'~

CS:̂

■j*E

'-1

COBOL 74
Reference Guide

DOC 5039-184
First Edition

by
Anne P. Ladd

This guide documents the software operation of the Prime Computer and
its supporting systems and utilities as implemented at Master Disk
Revision Level 18.4 (Rev. 18.4).

Prime Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
l icense.

Copyright © 1983 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, PRIME INFORMATION, and THE PROGRAMMER'S COMPANION
are trademarks of Prime Computer, Inc.

HCW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers

Software Distribution
Prime Computer, Inc.
1 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053

Communications Services
MS 15-13, Prime Park
Natick, MA 01760
(617) 655-8000 X4837

Customers Outside U.S. Prime INFORMATION

Contact your local Prime
subsidiary or distributor.

Contact your Prime
INFORMATION dealer.

SUGGESTION BOX

All correspondence on suggested changes to this document should be
directed to:

Anne P. Ladd
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

Contents
ABOUT THIS BOOK

OVERVIEW OF PRIME'S COBOL 74

Language Standards
Prime Extensions to the

ANSI Standard
COBOL 74 Under PRIMOS
Program Environments
System Resources Supporting

COBOL 74

COMPILING THE PROGRAM

Int roduc t ion
Using the Compiler
Compiler Options (Command Line

Options)
COBCL Files — Naming Conventions
Compiler Output

LOADING AND EXECUTING PROGRAMS

Loading Programs
Executing Loaded Programs —

Runtime
Switch Settings at Runtime
Runtime Error Messages

ELEMENTS OF PRIME OOBOL 74

Divisions of a COBOL
Program: A Summary

Format Notation
Coding Rules
Punctuation and Separators
The Prime OOBOL 74 Character Set
Character-str ings
Word Formation
Reserved Words
Programmer-defined Words
L i t e r a l s
Data Levels
Classes and Categories of Data
Data Representation and Alignment
Algebraic Signs

Qualificat ion, Subscript ing,
and Indexing

Arithmetic Expressions
Conditional Expressions

THE IDENTIFICATION DIVISION

IDENTIFICATION DIVISION
Example

THE ENVIRONMENT DIVISION

ENVIRONMENT DIVISION
CBJECT-COMPUTER
SPECIAL-NAMES
INPUT-OUTPUT SECTION
FILE-CONTROL
I-O-OONTROL
Example

THE DATA DIVISION

DATA DIVISION
FILE SECTION
Fi le -descr ip t ion-en t ry
COMPRESSED/UNCOMPRESSED — Prime

Extension
BLOCK CONTAINS
CODE-SET
DATA RECORDS
LABEL RECORDS
OWNER IS — Prime Extension
REOORD CONTAINS
VALUE OF FILE-ID, VOL-ID, CWNER-ID
Record-descript ion-entry
Level-number
Data-name or FILLER
BLANK WHEN ZERO
JUSTIFIED
OCCURS
PICTURE
REDEFINES
RENAMES
SIGN
SYNCHRONIZED
USAGE
VALUE
WORKING-STORAGE SECTION
LINKAGE SECTION
Example

THE PROCEDURE DIVISION

PROCEDURE DIVISION
Declarative Statements
Procedure Statements
Alphabetical List of All Verbs
Example 8-104

1OTERPR0GRAM COMMUNICATION

Function 9-1
LINKAGE SECTION 9-2
PROCEDURE DIVISION 9-4
CALL 9-5
ENTER 9-7
EXIT PROGRAM 9-8
GOBACK — Prime Extension 9-9
Loading and Executing

More Than One Program 9-10
Example 9-12

BLE HANDLING

D e fi n i t i o n 10-1
DATA DIVISION 10-2
OCCURS 10-2
USAGE 10-6
INDEXED BY 10-7
PROCEDURE DIVISION 10-8
SET 10-8
SEARCH 10-10
Strategy 10-16
Example 10-21

E SORT-MERGE MODULE

D e fi n i t i o n 11-1
Loading Sort and Merge Programs 11-2
ENVIRONMENT DIVISION 11-3
I-O-OONTROL 11-3
DATA DIVISION 11-5
FILE SECTION 11-5
Sort File Description 11-5
PROCEDURE DIVISION 11-6
MERGE 11-6
RELEASE 11-13
RETURN 11-15
SORT 11-17
Example 11-24

12 INDEXED SEQUENTIAL FILES

Function of the Indexed 1-0 Module
Loading and Executing Programs

With Indexed Files
Indexed File Concepts
Common Operations on Indexed Files
ENVIRONMENT DIVISION
INPUT-OUTPUT SECTION — FILE OONTRCL
I-O-OONTROL
DATA DIVISION
Recor d-descr ipt ion-entry
PROCEDURE DIVISION
CLOSE
DELETE
OPEN
READ
REWRITE
SEEK — Prime Extension
START
USE
WRITE
Example

13 RELATIVE FILES

Function of the Relative 1-0 Module
Loading and Executing Programs With

Relative Files
Relative File Concepts
Common Operations on Relative Files
ENVIRONMENT DIVISION
INPUT-OUTPUT SECTION — FILE CONTROL
I-O-OONTRQL
DATA DIVISION
Record-descript ion-entry
RELATIVE KEY
PROCEDURE DIVISION
CLOSE
DELETE
OPEN
READ
REWRITE
SEEK — Prime Extension
START
USE
WRITE
Example

14 TAPE FILES

I n t r o d u c t i o n 1 4 - 1
Compiling, Loading, and

Executing Programs That Use Tape 14-2

File Assignments for Tape
Multivolume Tape Files
IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
DATA DIVISION
BLOCK CONTAINS
OODE-SET
VALUE OF FILE-ID
PROCEDURE DIVISION
CLOSE
OPEN
READ
WRITE
Overview of the LABEL Command
Using LABEL
Errors Using LABEL
The HELP Facility
Example

APPENDIXES

A REFERENCE TABLES

O O B Q L S y m b o l s A - 2
O O B C L R e s e r v e d W o r d s A - 6
ASCII Character Set and Collating

S e q u e n c e A - 1 0
EBCDIC Character Set and Collating

S e q u e n c e A - 1 5
F i l e S t a t u s C o d e s A - 1 7
P e r m i s s i b l e 1 - 0 S t a t e m e n t s A - 2 0
Hexadecimal and Decimal Conversion A-21
Octal and Decimal Conversion A-22
H e x a d e c i m a l A d d i t i o n Ta b l e A - 2 2
Decimal Data Type

(O v e r p u n c h S y m b o l s) A - 2 3

ERROR MESSAGES

Compi le Time Er ror Messages B- l
COBOL Runtime Error Messages B-2
MIDAS or MIDASPLUS Runtime

E r r o r M e s s a g e s B - 2
P R I M O S E r r o r M e s s a g e s B - 3

FIPS LEVELS

D THE DEBUGGER INTERFACE

Overview
Examples

E CREATING INDEXED AND RELATIVE FILES:
THE MIDASPLUS INTERFACE

D e fi n i t i o n s
CREATK
KBUILD
CREATK for Indexed Files
KBUILD for Indexed Files
CREATK for Relative Files
KBUILD for Relative Files

F OOBOL 74 LIBRARY FILES

G THE MAP OPTION

Example

H THE XREF OPTION

Example

I PRIME SUPPORT OF THE ANSI STANDARD

Prime Extensions to the ANSI
Standard

J IMPLEMENTATION-DEPENDENT FEATURES OF
PRIME COBOL 74 IN REV. 18

K FILE ASSIGNMENTS WITH -OLD

L CONVERSION INOOMPATIBILrTIES WITH
PRIME'S OLDER OOBQL: REV. 18.4
AND HIGHER

M GLOSSARY

INDEX

The OOBCL 74 Reference Guide (DOC5039) describes Prime OOBCL 74 for
software revision levels 18.4 and higher. The guide provides the
necessary information for compiling, loading, executing, and debugging
OOBQL programs on a Prime system. It is designed to be used as a
reference guide for an experienced COBCL programmer. Users unfamiliar
with the language should read one of the many commercially available
instruction books. Examples are:

Feingold, Carl. Fundamentals of Structured COBOL Programming.
Dubuque: Wm. C. Brown Company, 1978.

McCracken, Daniel D. A Simplified Guide to Structured COBCL
Programming. New York: John Wiley, 1976.

Philippakis, Andreas S. and Kazimier, Leonard J. Advanced COBOL.
New York: McGraw-Hill, 1982.

ORGANIZATION

This document has four parts:

Overview: Introduces Prime's COBCL 74, including supporting
utilities, systems, and software (Chapter 1), and differences
from the ANSI standard.

Prime System Information: Provides information on the use of
the COBOL 74 compiler (Chapter 2), and describes the process of
loading and executing COBOL 74 programs (Chapter 3).

Language Reference: Provides OOBQL 74 language specifications,
patterned after the ANSI standard. The three subdivisions are:

• Elements of COBOL (Chapter 4)

• Nucleus, Library, and Sequential 1-0 as one module
(Chapters 5-8)

• Other Functional Processing modules, including tape
processing (Chapters 9-14)

Appendixes and Index: The appendixes present repeatedly used
data and special interfaces to other products, plus a brief
conversion guide and glossary.

SUGGESTED REFERENCES

The Prime User's Guide (DOC4130) describes all supporting PRIMOS
utilities for programming in Prime OOBQL or any other Prime language.
The Prime User's Guide is essential to the OOBOL programmer.

An online system for bug reporting is available from your System
Analyst. This is the POLER system.

ACKNCWLEDGMENTS

OOBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
OODASYL Programming Language Committee as to the accuracy and
functioning of the programming system and language. Moreover, no
responsibility is assumed by any contributor, or by the committee, in
connection therewith.

The authors and copyright holders of the copyrighted material used
here in :

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming
for the UNIVAC R I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation, IBM Commercial
Translator Form No. F 28-8013, copyrighted 1959 by IBM, FACT,
DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell.

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of OOBOL specifications in programming manuals or
similar publications.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Command and
statement formats show the syntax of commands, program language
statements, and callable routines. Examples illustrate the uses of
these commands, statements, and routines in typical applications.
Terminal input may be entered in either uppercase or lowercase.

Convention Sanation Example

UPPERCASE In command formats, words in
uppercase indicate the actual
names of commands, statements,
and keywords. They can be
entered in either uppercase
or lowercase.

SLIST

In command formats, words
in lowercase indicate items
for which the user must
substitute a suitable value.

CBL program-name

examples

In examples, user input is
underlined but system prompts
and output are not.

OK, SEG -LOAD

Brackets enclose a list of
one or more optional items.
Choose none, one, or more of
these items (0 to n).

SPOOL -LIST
-CANCEL

Braces enclose a vertical
list of items. Choose one
and only one of these items,

CLOSE I filename
I ALL

An ellipsis indicates that
the preceding item may be
repeated.

i t em-x [, i t em-y] .

In command or statement
formats, parentheses must be
entered exactly as shown.

data-name (index)

Hyphen Wherever a hyphen appears in
a command line option, it is
a required part of that
opt ion.

CBL name -LIST

Unless used in a COBOL
PICTURE clause, the (CR)
symbol indicates a single
carriage return that is
generated by pressing the
RETURN key on most terminals.

Angle brackets Angle brackets must be
< > u s e d a s s h o w n t o s e p a r a t e

the elements of a pathname.

<FOREST>BEECH>LEAF4

ADDITIONAL DOCUMENTATION CONVENTIONS

Convention Explanation Example

Shading around a section of
text indicates a Prime
extension to or restriction
on the ANSI standard.

File-name Conventions

Convention Explanation Example

file-name.language Source file
or file-name

MYPROG.CBL

file-name. BIN
or B_file-name

file-name. LIST
or L file-name

Binary (object) file

Listing file

MYPRCG.BIN

MYPROG.LIST

file-name.SEG Saved executable runfile
(V-mode)

MYPROG.SEG

File-names may be comprised of 1 to 32 characters inclusive, the first
character of which must be nonnumeric. Names should not begin with a
hyphen (-) or underscore (_). File-names may be composed only of the
following characters: A-Z, 0-9, _#$&-*. and /.

See Chapter 2 for an explanation of how the various names for source,
object, listing, and runtime files relate to each other.

Note

On some devices, the underscore (_) may print as back arrow
(<H.

Overview of Prime's
COBOL 74

LANGUAGE STANDARDS

Prime OOBCL 74 is based upon American National Standards Institute
(ANSI) OOBOL, as defined in the document American National Standard
Programming Language OOBQL X3.23-1974, published by the American
National Standards Institute, New York, 1974. Each module of the ANSI
OOBCL standard has two levels, as defined in X3.23-1974. Level 2
contains the full set of features; level 1 contains a subset of level
2. Appendix I shows Prime support of the ANSI OOBOL 74 standard for
level 2.

Prime also provides syntax checking for levels 1-4 of
Information Processing) OOBCL. FIPS standards are
Appendix C.

FIPS (Federal
presented in

PRIME EXTENSIONS TO THE ANSI STANDARD

Appendix I provides a complete list of Prime extensions. In this
manual, Prime extensions are indicated by shading. Some of the most
important are:

First Edition

DOC5039-184

(s ing le-prec is ion float ing po in t , double-prec is ion float i
point, and packed decimal) are supported.

Paragraphs within the ENVIROIMENT division may be omitted or
be entered in any order.

EBCDIC is supported as an alphabet-name.

The file attribute COMPRESSED/UNCOMPRESSED is supported.

Eight levels of subscripting are supported.

Subscripts may themselves be subscripted, and may be arithme
expressions.

Arithmetic expressions may be used in place of data-names.

The OORRESPONDING option may be used with IF and with j
arithmetic verbs.

The WITH NO ADVANCING option may be used with DISPLAY.

THEN and OTHERWISE may be used in conjunction with IF.

Literals may be used as operands of most clauses after INSPE
-
The EJECT, EXHIBIT, GOBACK, NOTE, READY TRACE, REMARKS
RESET TRACE statements have been added.

CALL may pass arguments of a level-number other than 01 or
(except 66 or 88).

The compiler may be used with options such as cross reference,
data map, FIPS checking, and interface to the Prime Source Level
Debugger.

OOBCL 74 UNDER PRIMOS

Implementation

Prime's OOBOL 74 operates under PRIMOS, the Prime operating system.
Figure 1-1 is a representation of how the user's memory space appears.
The first part shows how that space appears after login, when control
is at PRIMOS command level. The next part shows user space after the
command CBL filename has been issued and control passes to the OOBOL 74
compiler. (Commands such as DBG, SEG, or PL1G cause control to pass to
the Source Level Debugger, the load utility, or the PL/I Subset G
compiler, respectively.) The third part represents memory after the
OOBQL 74 compiler has finished and has transferred control back to

First Edition

OVERVIEW OF PRIME'S COBOL 74

PRIMOS

OOBOL 74 SEG PL1G I DBG

User Memory Space Under PRIMOS Control

OOBOL 74

PRIMOS PL1G DBG

User Memory Space Under OOBOL 74 Control

PRIMOS

COBOL 74 S E G P L 1 G DBG etc .

User Memory Space Under PRIMOS Control

Representation of the User's Memory Space as COBOL 74 is Invoked
Figure 1-1

PRIMOS. PRIMOS control is marked by the screen display OK, which may
be changed by the user or by the System Administrator.

OOBOL 74 runs on all Prime models that support Virtual Addressing mode
(V-mode). OOBOL runfiles operate in V-mode, which is explained in the
Assembly Language Programmer's Guide (FDR3059-101). Prime's processors
execute an extended set of instructions directly, including decimal
ar i thmet ic and character edi ts. They maximize execut ion t ime
efficiency better than processors that only substitute an equivalent
software routine. The Prime instruction set hardware is presented in
the System Architecture Reference Guide (PDR3060-182) and the Assembly
Lanouaae Programmer's Guide.

First Edition

DOC5039-184

Operating Environment

Only one version of PRIMOS exists for all Prime models. It features
paged and segmented virtual memory management. The system is based on
demand paging from disk with 2048 bytes per page. A page-sharing
feature reduces overhead time. The system thus supplies paging
requirements for the application program immediately and automatically.
For example, several OOBOL users may share one copy of the EDITOR to
enter or modify their programs, rather than having multiple copies.

Compatibility of Old and New Prime OOBCL

The Prime system allows programs that were compiled under previous
Prime OOBOL compilers to run without being recompiled. If programs are
recompiled using OOBCL 74, they should be loaded and executed using the
Rev. 18 or higher PRIMOS.

PROGRAM ENVIRONMENTS

Under PRIMOS, OOBCL 74 programs may execute in one of
environments:

three

In te rac t i ve

Phantom user

Batch job

In te rac t i ve

All phases of OOBCL compilation can be handled through interactive
terminals. Therefore, source programs can be entered and modified
directly at a terminal. A OOBOL programmer can create, edit, compile,
list, debug, execute, and save a program in a single interactive
session.

Program execution is initiated directly by the user. Programs run in
real time and are associated with a terminal. Program output, as well
as error messages, may be displayed at the terminal. Major uses are:

• Program development

• Programs requiring short execution time

• Data entry programs such as order entry or payroll

• Interactive programs such as the EDITOR

First Edition

OVERVIEW OF PRIME'S OOBOL 74

All examples of compiling, loading, and execution in this book are
given for an interactive environment.

Phantom User

The phantom environment allows programs to be executed while not
associated with a terminal. This frees the terminal for other uses.
Phantom users are programs that accept input from a command file
instead of a terminal; output directed to a terminal is either ignored
or directed to a file.

Major uses of phantoms are:

• Programs requiring long execution time (such as sorts)

• Certain system utilities (such as line printer spooler)

• Any program when the terminal should be freed for another use

More detail on command files and phantom users is in the Prime User's
Guide.

Batch Job

Since the number of phantom users on a system is limited, phantoms are
not always available. The batch environment allows users to submit
noninteractive command files as batch jobs at any time. The Batch
Monitor (itself a phantom) queues these jobs and runs them, one to six
at a time, as phantoms become free.

More detail on command files and batch processing is in the Prime
User's Guide.

SYSTEM RESOURCES SUPPORTING OOBCL 74

Prime COBOL shares with all Prime programming languages a broad range
of system and file management resources. Such resources as system
libraries, the text editor, the Debugger, or the SEG utility expand the
scope and efficiency of Prime's interactive environment. Compatible
file management systems provide standardized file management, with
files created and maintained separately from the applications program.
Programs compiled in any of several languages may be called by COBCL
programs.

First Edition

DOC5039-184

L ib ra r i es

The OOBOL programmer may find system library functions and subroutines
of use in some applications. A complete treatment of all library and
system subroutines is in the Subroutines Reference Guide (DOC3621). A
list of modules in the OOBOL 74 library (CBLLIB or NCBLLIB) is in
Appendix F.

Edi tors

Prime's EDITOR is a line-oriented text editor enabling the programmer
to enter and modify source code and text files. Information for these
purposes is in the Prime User's Guide. A complete description of the
EDITOR is in the New User's Guide to EDITOR and RUNOFF FDR3104-101 .

EMACS is Pr ime 's screen-or ien ted ed i to r, separa te ly pr iced.
Information on this product is in the EMACS Primer (IDR6107-183), the
EMACS Reference Guide (IDR5026), and the EMACS Extension Writing Guide
(IDR5025-183).

Debugger

The Source Level Debugger is a symbolic debugger that allows
breakpoints, single-stepping, tracing, change of program flow, and
modification of data. The COBOL 74 compiler option that interfaces to
the Debugger is presented in Chapter 2 and Appendix D. The Debugger is
described in the Source Level Debugger Guide (DOC4033).

Load and Execute Utility

SEG is the loading and execution utility for COBOL and most other
languages. I t combines separately compiled program modules,
subroutines, and libraries into an executable program. All memory
management, symbol tables, and linkages are handled by SEG's loader.
Various types of load maps may be obtained. The SEG utility has many
functions. The minimum functions necessary for a OOBOL user are
described in Chapter 3 of this guide. Advanced features are presented
in the SEG and LOAD Reference Guide (DOC3524-192).

Multiple Index Data Access System (MIDAS or MIDASPLUS)

MIDASPLUS (or the old MIDAS) is a system of utilities and subroutines
for creating and maintaining files for use with the Indexed Sequential
and Relative 1-0 modules of OOBQL 74. MIDASPLUS provides the OOBOL
programmer w i th a t ransparen t mu l t i l eve l fi le s t ruc tu re . A l l
housekeeping functions on the index and data subfiles are performed by

First Edition

OVERVIEW OF PRIME'S COBOL 74

MIDASPLUS subroutines called automatically from the OOBOL library
routines. MIDASPLUS files created by programs written in one language
may be accessed and manipulated by programs written in other languages,
assuring compatibil i ty.

The MIDASPLUS Access Manager is reentrant. All active programs on
Prime models 350 and above share a single copy of the manager,
minimizing redundancy. MIDASPLUS features of interest to the COBOL 74
programmer include the following.

• There can be up to 17 alternate record keys for a MIDAS or
MIDASPLUS file.

» Duplicate keys let MIDAS or MIDASPLUS retrieve multiple records
for a single key value.

• Keys can be constructed from concatenated information.

• A single program can make both sequential and random accesses to
a single file.

Basic MIDASPLUS template construction is presented in Appendix E. The
complete documentation is the MIDAS User's Guide (IDR4558), together
with the update on MIDASPLUS (PTU2600-098).

Caution

Do not use OOBOL with an outdated revision of MIDAS or MIDASPLUS.

Forms Management System (FORMS)

FORMS is a system for creation, maintenance, and use of screen forms
for interactive file maintenance. These screen forms are an extremely
useful tool for the applications programmer writing data entry programs
where data fields are to be displayed in one or more formats. FORMS
keeps application programs, the forms, and the devices they use
separated until runtime. Thus, changes can be effected in one area
without necessarily affecting the other two.

FORMS is compatible with DBMS and MIDAS or MIDASPLUS. It helps make
accurate data available at widely dispersed locations for inquiry or
update by all kinds of business transactions. Details are in the FORMS
Programmer's Guide (PDR3040).

First Edition

DOC5039-184

Language Interfaces

Since all Prime high-level languages are alike at the object-code
level, object modules produced by the COBCL compiler can call and be
called by modules produced by the F77, FTN, Pascal, PMA, or PL1G
compilers, provided that the following restrictions are observed.

• All" 1-0 routines must be written in the same language.

• There must be no conflict of data types for variables being
passed as arguments.

For more information on language interface, see Rev. 19 or later of
the Subroutines Reference Guide and Table 9-1 of this manual.

First Edition

Compiling the
Program

INTRODUCTION

To get a OOBQL program running, you must first compile it successfully,
which means with no errors of severity level 3 or 4. This process is
explained in Chapter 2. Then you must load and execute it as explained
in Chapter 3.

USING THE COMPILER

The COBOL 74 compiler is invoked by the CBL command to PRIMOS in this
command line format:

CBL pathname [-option-1 [-option-2 ... -option-n]]

pathname The pathname of the OOBCL source file. Pathnames are
explained in the Prime User's Guide.

options The options controlling compiler functions such as
listings and debug interface. The options are
explained in COMPILER OPTIONS (QOMMAND LINE OPTIONS)
below. All option names must be preceded by a hyphen
or dash (-).

CBL MYPROG -L HOME>MYPROG.LIST

First Edition

DOC5039-184

OOMPILER OPTIONS (COMMAND LINE OPTIONS)

The compiler functions enabled by the various options of the CBL
compiling command fall into six groups:

• Specifying the source file

• Specifying the existence and contents of the source listing and
other l istings

• Specifying the handling of error and statistics information

• Specifying the existence and properties of the object code

• Increasing segment work space

• Specifying 1-0 handling

• Providing help in selecting options

In this section, options that are Prime-supplied defaults are marked
with bullets (o).

Note

The System Administrator may change these defaults at a
particular installation. The command CBL and other features of
the programming environment may also be altered.

Some options require an argument in addition to the option
specification. The argument follows the option, and is not preceded by
a dash. Options may be given in any order.

Table 2-1 lists the options alphabetically with their abbreviations.

The Source File

The source file is usually designated by pathname immediately after the
CBL command. Alternatively, it may be given in an option. Lowercase
letters in the source may be changed automatically to uppercase before
compilat ion.

▶ -INPUT pathname
-SOURCE pathname

These are obsolete options. Either of these can be used to specify the
source file to be compiled as an alternative to naming the file
immediately after the CBL command.

First Edition

O0MPILTN3 THE PROGRAM

Table 2-1
Summary of Compiler Options and Abbreviations

(Defaults are underlined.)

Option Abbrev ia t ion S i g n i fi c a n c e

-ALLERRORS -ALL Produce diagnostics for all errors
detected during the compilation

-BINARY o -B Create object file
-DEBUG -DEB Generate debugger code
-DIAGSONLY -DIAGS Produce diagnostics only (no code

generation)
-ERRORFILE -ERR Produce error file if any

diagnostics are used
-EXPLIST -EX Produce expanded source listing
-FIPS1 Flag all elements that exceed FIPS

level 1
-FIPS2 Flag all elements that exceed FIPS

level 2
-FIPS3 Flag all elements that exceed FIPS

level 3
-FIPS4 Flag all elements that exceed FIPS

level 4
-FORCEBINARY -FORCE Create object file even after fatal

d iagnost ics
-HELP Display list of options
-HEXADDRESS -HEX Print addresses in hexadecimal

no ta t i on
-INPUT - I Designate source file
-LNKWRK2 -LN Make the amount of work space in the

linkage segment twice the default
va lue

-LNKWRK4 Make the amount of work space in the
linkage segnent four times the
default value

-LIST -L Create source listing
-MAP Produce a data map at the end of the

l i s t i n g
-MAPSORT -MAPS Print map with names sorted

a l p h a b e t i c a l l y
-MAPWIDE -MAPW Print map and cross reference on

108-character l ines
-NOBINARY -NOBIN Create an empty binary file
-NOCALCINDEX -NOCALC Calculate address of index

references only at time of
reference

-NOOPTIMIZE -N0OP Don't optimize object code
-NOOWNERID -N30WN Don't enter program-id in

object-program stack

Fi rs t Edi t ion

DOC5039-184

Table 2--1 (continued)
Summary of Compiler Options and Abbreviations

Option Abbreviation Significance

-NOSYNTAXMSG -NOSYN Suppress syntax-recovery messages
-NOTTYDIAGS -NOTTY Suppress all diagnostics to the

terminal
-OFFSET -OFF List object address of procedure

statements
-OLD Allow only those 1-0 constructs that

were allowed in old COBOL
-OPTIMIZE • -OPT Optimize object code
-PRODUCTION -PROD Generate production code
-RANGE Check subscript ranges
-RMARGIN Extend Area B to column 160
-SIGNALERRORS -SIG Abort execution and signal overflow

errors
-SILENT -SIL Suppress severity-level-1

diagnostics
-SILENT2 -SIL2 Suppress level-2 diagnostics
-SILENT3 -SIL3 Suppress level-3 diagnostics
-SLACKBYTES -SLACK Flag each item that is compiler-

aligned
-SOURCE -S Designate source file
-STATISTICS -STAT Print compiler statistics
-TOTALS -TOT Display program statistics
-TRUNCDIAGS -TRUNC Issue diagnostics for truncated

resul t
-XREF -X G e n e r a t e c r o s s r e f e r e n c e !
-XREFSORT Generate alphanumeric-order cross

reference
-64 V • Produce 64V-mode code

First Edition

COMPILING THE PROGRAM

The options -I and -S must not be used if the source file-name
immediately follows the CBL command.

▶ -RMARGIN

Extends Area B of each source line to column 160.

Existence and Contents of the Source Listing

^ -EXPLIST

Creates a source listing with an assembly code listing.

Each statement in the source will be followed by the PMA (Prime Macro
Assembler) statements into which it was compiled. For use of the
listing, a knowledge of PMA is necessary. For information on PMA, see
the Assemblv Language Programmer's Guide.

▶ -HEXADDRESS

In conjunction with -LISTING, creates a listing file with all addresses
in hexadecimal instead of octal notation.

^ -LISTING [argument]

Specifies creation of the source listing file. The basic source
listing contains the date and time of compilation, the options in
effect, the source text, and a list of errors. The argument may be:

pathname The listing will be written to the file pathname.

YES • If the source file-name is named program. CBL, the
listing file is named program.LIST. Otherwise it is
named Ii=program. The listing is created in the UFD
from which the CBL command is invoked.

TTY The listing will be printed at the user terminal.

SPOOL The l is t ing wi l l be spooled d i rect ly to the l ine
p r i n t e r .

) N o l i s t i n g fi l e w i l l b e c r e a t e d .

When no -L option is given, -L NO is presumed. When -L is given with
no argument, -L YES is presumed.

First Edition

DOC5039-184

p, -MAP
Produces a listing with a data map. A sample data map with discussion
is given in Appendix G. This option includes -LISTING implicitly, so
the two should not be used together.

^ -MAPSORT

Produces a listing with a data map that is sorted alphabetically.

P> -MAPWIDE

Produces a listing with a data map. The map information is printed in
108-character l ines instead of 80-character l ines. This opt ion
includes -LISTING implicitly, so the two should not be used together.

▶ -OFFSET

Produces a listing with the object address (octal offset from the
Procedure Base register) of each PROCEDURE division statement appended
in the form:

line number: halfword offset

This option includes -LISTING implicitly, so the two should not be used
together.

^ -XREF

Creates a listing with a map and cross reference. The cross reference
lists, for every variable, the line number on which the variable was
referenced. If the line number is preceded by an asterisk, the
reference changes the variable's value. A sample cross-reference
listing with discussion is given in Appendix H. This option includes
-LISTING implicitly, so the two should not be used together.

• -XREFSORT

Creates a listing like the one generated by -XREF, but with data-names
in alphanumeric order.

First Edition

COMPILING THE PROGRAM

Error and Statistics Information

-ALLERRORS

Produces diagnostics for all errors detected in the source program. If
-ALLERR is not specified, compilation will abort when 100 fatal
diagnostics have been issued.

^ -ERRORFILE

If any diagnostics are issued, produces a file
program-name.CBL.ERROR, containing all diagnostics issued.

ca l l ed

▶ -FIPS1,-FIPS2, -FIPS3, -FIPS4

Flags all occurrences of COBOL elements that exceed the specified level
of FIPS (Federal Information Processing Standard). The correlation of
this standard with the ANSI standard is given in Appendix C.

▶ -NOSYNTAXMSG

Suppresses the messages "SYNTAX CHECKING SUSPENDED" and "SYNTAX
CHECKING RESUMED" that accompany error messages.

▶ -NOTTYDIAGS

Suppresses all diagnostics to the terminal.

^ -SILENT

Suppresses diagnostics of severity level 1, both at the terminal and in
the listing file. (Levels of messages are explained in the section
OOMPILER CUTPUT below.)

▶ -SILENT2

Suppresses level-2 diagnostics.

First Edition

DOC5039-184

▶ -SILENT3

Suppresses level-3 diagnostics.

▶ -SLACKBYTES

Issues a severity-level-1 diagnostic for each elementary or group item
that is aligned by the compiler on a 16-bit boundary. (OOMP, OOMP-1,
and COMP-2 data items must be allocated on 16-bit boundaries. When any
of these items are members of a group, they are allocated on the
current available location if that location is on a 16-bit boundary.
Otherwise they are shifted one byte to the right. The group item that
con ta ins the i tems is a lso sh i f ted i f requ i red . See DATA
REPRESENTATION AND ALIGNMENT in Chapter 4.

First Edition

COMPILING THE PROGRAM

▶ -STATISTICS

Controls printout of compiler statistics.

A list of compilation statistics is printed at the terminal after each
phase of compilation. Headings are:

LEX Lexical analysis and parsing of IDENTIFICATION
div is ion

ED PARSE Parsing of ENVIRONMENT division

DD_PARSE Parsing of DATA division

PD PARSE Parsing of PROCEDURE division

ALLOCATOR Data allocation

GENERATOR Optimization and object-code generation

TOTAL Total disk time for all phases

For each phase the list contains:

DISK Number of reads and writes during the phase,
excluding those needed to obtain the source file

SECONDS Elapsed realtime

SPACE Internal buffer space used for symbol table, in
units of 16K bytes

PAGING Disk 1-0 time

CPU CPU time in seconds, followed by the clock time
when the phase was completed

At the end of the listing, storage allocation statistics are appended.
All sizes are stated in 16-bit halfwords. The statistics are:

Code Size The number of halfwords of object code generated
from the PROCEDURE division of the source program.
The maximum allowable is listed in Appendix J.

Static Size The size of the user-defined WORKING-STORAGE.

Source Lines The number of lines in the source program.

Lines per Min Lines compiled per minute.

First Edition

DOC5039-184

▶ -TOTALS

Displays the following program statistics on the terminal at the end of
compilation:

• Procedure code size in 16-bit halfwords. This is the part of
the program addressed by the procedure base register, explained
in the Assembly Language Programmer's Guide.

■ Static (WORKING-STORAGE) size in 16-bit halfwords. This is the
part of the program addressed by the link base register, which

1iuKf^*=*TI*i>fcI*C=»V<*I*>

Number of source lines.

Compilation speed in lines compiled per minute.

▶ TRUNCDIAGS

Issues diagnostics whenever the result cannot fit in the receiving
fi e l d .

Existence and Properties of the Object Code
• -BINARY [argument] •

Specifies a binary (object) file-name to override the default. The
argument may be:

pathname Object code is written to the file pathname.

YES • If the source file-name is program.CBL, the object file
is named program.BIN. Otherwise the object code is
written to a file named B_program. The file is created
in the UFD from which the CBL command is invoked.

NO No binary file is created. Specified when only syntax
check or source listing is desired.

When no -B option is given, or -B without an argument is given, -B YES
will be presumed.

More information on naming binary object files is given below in OOBOL
FILES — NAMING CONVENTIONS.

First Edition

COMPILING THE PROGRAM

Storage Allocation and Addressing: The programmer
addressing mode (64V) to be used in the object file.

can specify the

▶ -64V •

This option specifies the addressing mode to be used in the object
code. 64V is a segmented virtual addressing mode for 32-bit machines.
It is the default and only storage option available for OOBCL.

Augmented Object Code

-DEBUG

Controls generation of code for the Debugger.

The object file is modified so that it will run under the Source Level
Debugger. Execution time is increased. The code is not optimized.

When the -DEBUG option has been included in the command line, the
resulting object file can be debugged using the commands specified in
the Source Level Debugger Guide. Appendix D gives more information on
COBCL 74 for the Debugger.

▶ -DIAGSONLY

Compiles for diagnostics only; does not execute the code generation
phase and produces only an empty binary file.

▶ -FORCEBINARY

Creates a binary file even if fatal diagnostics were issued.

-NOCALCINDEX

Performs address calculations for indexed references at the time the
indexed item is referenced, instead of when the index is changed by a
SET, SEARCH, or PERFORM statement.

First Edition

DOC5039-184

▶ -NOOWNERID
Does not enter the program-id onto the object-program stack, thus
saving a small code sequence for extremely time-critical programs.
(The program-id on the stack is useful with the PRIMOS command DMSTK
for debugging.)

▶ -OPTIMIZE
Controls the optimization phase of the compiler.

The object code will be optimized. Optimized code runs more
efficiently than nonoptimized code, but takes longer to compile. It
performs such automatic tasks as keeping track of register contents and
evaluating constant expressions.

▶ -NOBINARY

Creates only an empty binary file. This option has the same effect as
-DIAGSONLY.

▶ -NOOPTIMIZE

Optimization does not occur. This saves some compilation time.

^ -PRODUCTION

Controls code for the Debugger.

-PRODUCTION is similar to -DEBUG, except that the code generated will
not permit insertion of statement breakpoints. Execution time is not
a ffec ted.

-RANGE

Controls error checking for out-of-bounds values of array subscripts.

Error-checking code is inserted into the object file. Should an array
subscript take on a value outside the range specified in the DATA
entry, the ERROR condition will be signalled. (Note that range
checking decreases the efficiency of the generated code.)

First Edition

COMPILING THE PROGRAM

SIGNALERRORS

Aborts execution and signals a condition for arithmetic overflow and
convers ion e r ro rs . Exponent ia t ion e r ro rs a lways abor t ob jec t
execution.

Increase Segment Work Space

▶ -LNKWRK2
-LNKWRK4

Makes the amount of work space available in the linkage segment, needed
by the code generator, either twice or four times the default value.
Use this switch if you get the compile time message, "The amount of
compiler work space exceeds the current limit."

Specifv 1-0 Handling

▶ -OLD

Allows compatibility with 1-0 constructs that were allowed in old
COBOL:

Requires manual execution-time assignment of files unless the
EXIT PROGRAM statement is used. (See Appendix K.)

Uses COMPRESSED as the default FD option.

Allows only one through eight characters in the literal or
data-name for FILE-ID. (Normal 1-0 allows 1-120 character
values.)

Supplies a file-name in the series Fl, F2, etc., if no VALUE OF
FILE-ID clause is present for an FD. (Normal 1-0 uses the
file-name in the associated SELECT clause.)

Allows only one through six characters in the literal in the
OWNER clause. (Normal 1-0 allows 1-120 characters.)

Provide Heir

-HELP

Displays a list of compiler options and their functions.

This option should be entered with no operands, as follows:

CBL -HELP

First Edition

DOC5039-184

OOBCL FILES — NAMING CONVENTIONS

Three types of files may be involved in compilation: source file,
listing file, and object file. Of these, the listing and object files
are compiler-generated. Corresponding PRIMOS file units are given in
Table 2-2 below. (File unit numbers, which are needed for some PRIMOS
commands, are explained in Chapter 3 of the PRIMOS Commands Reference
Guide.)

Table 2-2
PRIMOS File Units

File Type PRIMOS File Unit

File-names

If a file-name is specified in the compile command line for the listing
or object file, the OOBCL compiler causes these files to be opened
under the file-name specified. If no file-name is used for the object
or listing file, two default options are possible.

Normal Default Naming: The OOBCL 74 compiler first looks for a file
with the suffix .CBL, then for the file-name alone. Thus, it is only
necessary to use the file-name without the suffix when invoking CBL.
If the source program name ends in .CBL, the default binary file-name
will be the file-name plus the suffix .BIN. If requested, the default
listing name will be the file-name plus the suffix .LIST and the error
file will be file-name.CBL.ERROR.

Thus, for MYPROG.CBL, if the compile command line is:

CBL MYPROG -LIST -ERRORFILE

the files produced will be
MYPROG. CBL. ERROR. The object file
loading described in Chapter 3.

MYPROG.BIN, MYPROG.LIST, and
may then be used for the default

First Edition

COMPILING THE PROGRAM

The Older Naming Convention: An older naming convention is followed
if the source file-name does not end in .CBL. The default convention
for a listing file is L_file-name. The default convention for an
object file is B_filename. An error file named file-name.CBL.ERROR is
also created, if requested.

Thus, for a source file named SAM, following the compile command CBL
SAM -LIST -ERRORFILE, the listing and object files would exist in the
current UFD as L_JSAM and B_SAM, respectively. If errors are generated,
they may be recorded in SAM. CBL.ERROR.

Default UFDs: If the source file is given as a pathname such as
[<MFD>]UFD1 ...>SAM, where the file SAM does not reside in the current
UFD (that in which compilation is occurring), the listing and object
files will, nevertheless, be created in the current UFD unless another
UFD is specified. This is true for both naming conventions.

Table 2-3 summarizes the two naming conventions.

Table 2-3
Default Naming Conventions

Source Binary Errors

file-name B_file-name L_file-name file-name. CBL. ERROR

file-name. CBL file-name.BIN file-name.LIST file-name.CBL.ERROR

Setting Default Names from PRIMOS: If the user desires the listing or
object files to have default names other than those outlined above, the
PRIMOS commands LISTING or BINARY with arguments must be invoked prior
to compilation. These command are discussed in the PRIMOS Commands
Reference Guide.

COMPILER OUTPUT

The compiler, as default options, sends output to the terminal and to a
binary file. If the number of fatal errors exceeds 100, compilation
ends unless the -ALLERRORs option was specified. Compiler file output
is summarized in Table 2-4.

First Edition

DOC5039-184

Output to the Terminal

If compilation is successful, the screen will display a message in the
following format:

[CBL rev x.x]
OK,

Table 2-4
Compiler File Specifications

(X means the argument must not
be used with this option.)

Argument
Following
Option

Option

-INPUT or
-SOURCE -LISTING -BINARY

pathname Looks for file
named pathname. CBL,
then pathname as
source file

Opens file named
pathname as list
ing file

Opens file named
pathname as binary
(object) file

YES Uses default file
name for listing
file: PROGRM.LIST
or L_PROGRM

Uses default file
name for binary
file: PROGRM.BIN
or B_PROGRM

NO No listing file No binary file

TTY X* Print listing on
user terminal

SPOOL Spool listing
directly to
printer queue

Option
not
invoked

Source file-name
should be first
option after CBL
command*

Same as NO Same as YES

* Other options are possible but not recommended for the OOBCL
programmer.

First Edition

COMPILING THE PROGRAM

If errors occur during compilation, error messages are output to the
terminal, and to the error file and the listing file if they have been
specified. An example is:

CBL MYPROG
[CBL rev x.x]
ERROR 7 SEVERITY 3 LINE 27 OOLUMN 36 [FATAL, SEMANTICS]
Picture clause too long.
ER!

If the compiler error message includes FATAL, no object file is
produced.

After compilation, control returns to PRIMOS.

Compiler Error Messages

The general format of the error message is:

ERROR e SEVERITY s LINE 1 OOLUMN c [text
d iagnost ic

The elements of this format are:

The COBOL error number

The severity number:

Observation

[text]

Warning

3 F a t a l (n o o b j e c t c o d e p r o d u c e d)

4 A b o r t i o n o f c o m p i l a t i o n (n o o b j e c t
code produced)

A description of the severity level and type:

SYNTAX Usually fatal, caused by violation
of syntax rules or format

SEMANTICS Caused by violation of syntax rules
or general rules

diagnostic The OOBOL compiler error message

First Edition

Loading and
Executing Programs

After a program has been compiled as discussed in Chapter 2, it must be
loaded into an executable file before being run or executed. The
PRIMOS SEG utility loads and executes all OOBQL 74 programs. The
loading steps create a runfile, or executable file consisting of one or
more object programs plus any necessary subroutines and libraries.
This runfile, or run unit, can then be executed at will. This chapter
describes normal loading and execution, and specifies some techniques
required for switch settings. Loading is described in more detail in
the Prime User's Guide. For extended loading features and a complete
description of all SEG commands, including those for system-level
programming, refer to the SEG and LOAD Reference Guide.

LOADING PROGRAMS

Default Loading

On Rev. 18 and higher, the SEG utility can create a default runfile
named program.SEG and load default object file-names. Use the -LOAD
parameter after SEG, providing the object filename ends in .BIN.

1. Give the command SEG -LOAD. The response will be a dollar sign
($), indicating that the load subprocessor is ready.

2. Use the LOAD command with either the binary filename or the
source filename. In the latter case, SEG will look for a
binary file of the same name, followed by .BIN.

First Edition

DOC5039-184

3. Use the LOAD command to load the object files of any separately
compilecTsubroutines (preferably in order of frequency of use).

4. Use the LIBRARY command to load subroutines called from
libraries in the following order:

• The OOBQL 74 library (CBLLIB or NCBLL3B)

• The sort-merge library, if sort-merge files are loaded
(VSRTLI, or NVSRTLI if a nonshared library is needed)

• Other Prime libraries, if required (filename)

• The PRIMOS system subroutine library — required (LI
with no filename)

See Figure 3-1 for a diagram of this process.

At this point, you should receive a LOAD COMPLETE message. If
the message is absent, check whether any required libraries,
programs to be called, or subroutines are missing. If
necessary, enter MAP 3 (described in the Prime User's Guide and
the LOAD and SBG Reference Guide) to identify the unsatisfied
references and load them. If the unsatisfied references are
caused by missing subroutine names, enter QUIT and restart from
Step 1. If some other SBG error message appears, refer to the
LOAD and SBG Reference Guide for the probable cause and
correct ion.

5. Enter QUIT to save the runfile and exit from the utility.

SEG will give the runfile the default name filename.SEG, where
filename is the name of the first object file loaded.

As an example, suppose you have a main program called MYPROG. CBL,
compiled to produce an object file called MYPROG.BIN. The runfile can
be created as follows:

OK, SEG -LOAD
[SBG rev x.x]
$ LO MYPROG
$ LI CBLLIB
$ LI
LOAD COMPLETE
$ Q
OK,

The command LO MYPROG loads MYPROG.BIN.
automatically named MYPROG.SBG.

The resulting runfile is

First Edition

Program binary file

pgm.BIN

LOADING AND EXECUTING PROGRAMS

Runfile

Called program or
subroutine, if any

Called program or
subroutine, if any

OOBOL 74 library

CBLLIB

SEG utility
w i t h

LOAD option

Loading (Creating a Runfile or Run Unit)
Figure 3-1

First Edition

DOC5039-184

The Older Loading Procedure

On Rev. 19 and lower, loads can be accomplished by the following
procedure:

1. Invoke the SBG loader with the SEG command without options. A
pound sign (#) will be the response and prompt symbol.

2. Enter the SBG-level LOAD command to start the load subprocessor
and to set up the runfile with a name selected by you (LO
runf ilename). A dollar sign will appear as the next prompt
symbol.

3. Use the LOAD command to load the object files in the following
order:

• The object file of the main program (B_filename)

• The object files of any separately compiled programs or
subroutines to be called (preferably in order of
frequency of use)

4. Use the LIBRARY command to load subroutines called from
libraries in the same order as in Step 4 for Default Loading
above.

5. Enter QUIT to save the runfile and exit from the utility.

As an example of loading, assume that the user has compiled a main
program, MAIN, and a subroutine in a separate source file, SUBR. Both
have been compiled using the default object file-names B_MAIN and
B_SUBR. They could be loaded as follows:

OK, SBG
[SBG rev 18.X]
LO MAIN.SEG
? LQ B.J1AIN
$ LO B_SUBR
$ LI CBLLIB

LOAD COMPLETE
$ Q
OK,

Brings SEG into memory

Invokes the loader and establishes a runfile
Loads the mam program
Loads any separately compiled subroutine
Loads the OOBQL 74 library
Loads the subroutine library
Loader indicates all references are satisfied
Returns to PRIMOS level

Note

Any name may be supplied for the runfile. A name ending with
.SBG is suggested to identify runfiles, and to allow the
default execution method described below.

First Edition

LOADING AND EXECUTING PROGRAMS

Load Error Messages

If the message WARNING — LOAD NOT COMPLETE is displayed, the cause may
be:

• Not loading necessary libraries such as VSRTLI or CBLLIB

• Not loading a program named in a CALL statement

To list all unresolved references, go through the loading routine and,
after the final LI, enter MAP 3. The MAP command is discussed in the
LOAD and SBG Reference Guide.

EXECUTING LOADED PROGRAMS — RUNTIME

Any of the following methods will start program execution, including
any necessary requests for switch settings. (See the following
sect ions.)

Executing Default Runfiles

If the runfile name ends in .SBG, you can execute the runfile by using
only the source program name, because, given pathname, SEG looks first
for pathname. SBG, then for pathname. For the default runfile
MYPROG.SEG in the previous example, execution is accomplished with:

SBG MYPROG

Execution of Other Runfiles

For runfiles whose names do not end in .SEG, execution is performed at
the PRIMOS level using the SBG command:

SBG runfilename

where runfilename is the pathname of a runfile created as described in
The Older Loading Procedure above, but whose name does not end with
.SBG.

First Edit ion

DOC5039-184

Immediate Execution

A shortcut to saving and executing a loaded program is available. In
the loading process described in the previous sections, immediately
after receiving the LOAD COMPLETE message, enter EXECUTE. This command
will then save the loaded program and start executing the program. The
runfile is automatically saved. EXECUTE may be used only within the
SBG subprocessor environment (that is, when the prompt $ is displayed).

Upon completion of program execution, control returns to PRIMOS command
l e v e l .

Printer Output File-name Conventions

Print files follow another default naming convention. Files assigned
to the printer are assigned by the COBOL runtime package to names
consisting of the first four characters of the program-id plus a
two-digit sequence number. The sequence number is 01 the first time
the program is run. It is incremented by one each time the program is
executed, if previous print files still exist. Thus when the program
containing the program-id DISBURSE is run the first time, the print
file is named DISB01 by default. The second run creates DISB02 if
DISB01 still exists.

SWITCH SETTINGS AT RUNTIME

If any of the switch-names CBLSWO through CBLSW7 (defined in Chapter 6)
have been used in the OOBQL source, execution will include a request
for switch settings, in this format:

SPECIFY ON SWITCHES:

The user should enter the numbers of all OOBCL switches, from 0 through
7, that are to be on during this execution. The numbers must be
separated by either spaces or commas. If an entry is wrong, an error
message is displayed and the request is repeated.

As an example, for the sample program given in the SPECIAL-NAMES
section of Chapter 6, if no tape processing or printout is desired, use
the following dialog at runtime:

SPECIFY ON SWITCHES:
1

RUNTIME ERROR MESSAGES

COBOL runtime error messages are self-explanatory,
error messages are in the Prime User's Guide.

System runtime

LOADING AND EXECUTING PROGRAMS

Common System Runtime Messages

The following system error conditions are typical of those that can
occur during execution of a COBOL program.

ACCESS_VTOLATIONS$ The run unit or runfile attempted to violate
the CPU access rules. This condition aborts
the run unit and can be caused by a variety of
factors. One common cause is reference to a
table with an out-of-range subscript. Use the
-RANGE option to locate the statement that
caused the subscript to go out of range.

ARITH$

ERROR$

LINKAGE_FAULT$

OUT_OF_BOUNDS$

POINTER_FAULT$

An arithmetic exception involved data overflow
of fixed or floating point operands. This
condition can occur only if the -SIGNALERRORS
option was specified, or for an exponential
o p e r a t i o n . T h e r u n u n i t a b o r t s . I f
-SIGNALERRORS was not specified, execution of
the run unit continues with truncation of the
value that would have caused the exception.

A conversion involving illegal characters was
attempted. Implicit conversions can occur in
OOBCL programs when fields of different types
are moved. The run unit aborts. In general,
this condition will not occur unless the
-SIGNALERRORS compile-time option was
specified. Recompiling the program with the
READY TRACE statement, or recompiling with the
-DEBUG option and then executing the run unit
under Debugger control, will help locate the
offending conversion.

An unsnapped link (unresolved call) was
encountered but the reference could not be
found in the system entry point table. The run
unit aborts. Either not enough libraries were
loaded or a program referenced in a COBCL CALL
statement was not loaded when this run unit was
linked with the SBG utility. If a map was
created when the run unit was linked, check it
for unresolved entries. Otherwise invoke SBG
again and, after LI, enter MAP 3.

See ACCESS_VTOLATION$.

A reference has been made to an indirect
pointer (IP) but the pointer does not appear to
be valid. The run unit aborts. The most
likely cause is a link base that has been
destroyed by a MOVE statement with out-of-range
subscripts. Recompile with the -RANGE option.

First Edition

Elements of Prime
COBOL 74

DIVISIONS OF A OOBOL PROGRAM: A SUMMARY

Every COBOL program consists of four divisions:

• IDENTIFICATION division

• ENVIRCNMENT division

• DATA division

PROCEDURE division

IDENTIFICATION Division

The IDENTIFICATION division (ID division) assigns a name to the program
and allows the programmer to enter other information, such as the
programmer's name, the date the program was written, and remarks.

ENVIROIMENT Division

The ENVIRONMENT division specifies those aspects of a program that
depend upon the physical characteristics of a specific computer, its
peripheral devices, and file system. Two sections make up the
ENVIRCNMENT division: the CONFIGURATION section and the INPUT-OUTPUT
section.

First Edition

DOC5039-184

The CONFIGURATION section describes the computer on which the source
program is compiled and the computer on which the compiled program is
to be run. It also relates implement or-names used by the compiler to
names introduced by the programmer in the source program.

The INPUT-OUTPUT section describes each file, and associates the file
with a peripheral device or a storage medium.

DATA Division

The DATA division provides the compiler with a description of every
data item used within the program. There are three sections of the
DATA division: the FILE section, the WORKING-STORAGE section, and the
LINKAGE section.

The FILE section describes the structure of data files. Each file is
defined by a file-description entry and one or more record-description
en t r i es .

The WORKING-STORAGE section describes records and noncontiguous data
items that are not part of external files, but are developed and
processed internally.

The LINKAGE section is meaningful only in a called program. This
section describes data items that may be used by both the called and
calling programs.

PROCEDURE Division

The PROCEDURE division contains instructions (OOBCL statements) to
solve a data processing problem. This division contains two types of
sections: declarative sections and procedural sections. The maximum
PROCEDURE division size is listed in Appendix J.

Declarative sections contain instructions that are not performed in the
regular sequence of coding. Such procedures are usually executed when
an error condition is detected during a file operation.

Procedural sections contain zero or more paragraphs each. Each
paragraph consists of a paragraph-name followed by zero or more OOBOL
sentences. Sentences, in turn, are comprised of one or more COBOL
statements.

Execution of the instructions in the PROCEDURE division begins with the
first statement in the division, excluding declaratives. Statements
are executed in the order in which they are written in the source
program, until a PERFORM, GO TO, or other transfer of control is
encountered.

First Edition

ELEMENTS OF PRIME COBOL 74

Program Outline and Example

The following outline defines the program format and order (conventions
of notation are explained on page 4-5):

f IDENTIFICATION DIVISION. \
I ID DIVISION.

PROGRAM-ID. program-name.
[AUTHOR, [comment-entry] —]
[INSTALLATION, [comment-entry] •••]
[DATE-WRITTEN, [comment-entry] —]
[DATE-COMPILED, [comment-entry] •••]
[SECURITY, [comment-entry] •••]
[REMARKS, [comment-entry] •••]
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

[SOURCE-COMPUTER, source-computer-entry.]
[OBJECT-COMPUTER, object-computer-entry.]
[SPECIAL-NAMES, [special-names-entry.] •••]
I N P U T- O U T P U T S E C T I O N . 1

[FILE-CONTROL, {file-control-entry}] •••
ri-O-CONTROL. [l-O-control-entry]]
DATA DIVISION.
RLE SECT ON.
file-description-entry.

. [record-description-entry] ••• J •••
. sort-file-description-entry. , .
L {record-description-entry} ••• J ••• '

WORKING-STORAGE SECTION, 1
I level-77-description-entry I ••■
L record-description-entry I

LINKAGE SECTION.
j level-77-description-entry 1 •••I record-description-entry

Idr f t f^ i l l lsMi lMMMMIIMM
DECLARATIVES.

WJLU'lnlJ USE-sentence.
[paragraph-name, [sentence] •••] •••}
END DECLARATIVES.

H=MIMH
[[paragraph-name.] [sentence] •••]

The following listing file for program SAMPLE illustrates OOBCL program
format and order. SAMPLE reads a file and prints its contents.

Source File: <OPERSY>ANNE.K>PEGS-SAMPLE.CBL
Compiled on: THU, SEP 23 1982 at 13:27 by: CBL rev x 06/09/82.09:07:
44. Wed

First Edition

DOC5039-184

Options are: LISTING OPTIMIZE U(PPER)CASE

PROGRAM-ID. PEGS-OWN.
INSTALLATION. PRIME 50 SERIES.
DATE-WRITTEN. FEB. 25,1982.
DATE-COMPILED. 820923.13:28:00.
SECURITY. NONE
REMARKS. THIS PROG

CONTENTS SEQUE
* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME-750.
OBJECT-OOMPUTER. PRIME-750.
INPUT-OUTPUT SECTION.
FILE-OONTRQL.

SELECT PRINT-FILE ASSIGN TO PRINTER.
SELECT INPUT-FILE ASSIGN TO PFMS.

* *
DATA DIVISION.
FILE SECTION.
FD PRINT-FILE, LABEL RECORDS ARE OMITTED,

DATA REOORD IS PRINT-LINE,
VALUE OF FILE-ID IS FILE-NAME-PT.

01 PRINT-LINE.
0 5 F I L L E R P I C X .
0 5 O U T - L I N E P I C X (7 2) .

FD INPUT-FILE, LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'IN-DATA',
DATA REOORD IS INPUT-IMAGE.

0 1 I N P U T - I M A G E P I C X (7 2) .
*
WORKING-STORAGE SECTION.
01 HEADER.

0 5 F I L L E R P I C X VA L U E S PA C E S .
0 5 H I P I C X (7 1)

V A L U E ' N A M E S T R E E T
* C I T Y ' .

77 FILE-NAME-PT PIC X(8) VALUE 'PEGS.RPT'.
77 NO-MORE- INPUTS PIC X VALUE 'N1.

PROCEDURE DIVISION.
t
DECLARATIVES.
INPUT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON

INPUT-FILE.
ONLY-PARAGRAPH. DISPLAY 'ERROR CN WRITE' .

CLOSE INPUT-FILE, PRINT-FILE.
STOP RUN.

END DECLARATIVES.

BEGINNING SECTION.
100-CREATE-FILE.

First Edition

ELEMENTS OF PRIME COBOL 74

OPEN INPUT INPUT-FILE.
OPEN OUTPUT PRINT-FILE.
PERFORM 300-NEW-PAGE.
PERFORM 150-READ-PRINT.
PERFORM LAST-SECTION.
STOP RUN.

150-READ-PRINT.
READ INPUT-FILE AT END MOVE 'Y* TO NO-MORE-INPUTS.
PERFORM 155-PROCESS UNTIL NO-MORE-INPUTS = *Y' .

155-PROCESS.
MOVE INPUT-IMAGE TO OUT-LINE.
WRITE PRINT-LINE.
READ INPUT-FILE AT END MOVE 'Y' TO NO-MORE-INPUTS.

LAST-SECTION SECTION.
200-CLOSE-ALL.

CLOSE INPUT-FILE, PRINT-FILE.
DISPLAY ' END OF FILE' .

THIRD-LEVEL SECTION.
300-NEW-PAGE.

MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 1.

FORMAT NOTATION

Throughout this document, formats are prescribed for various clauses or
statements. They are presented in ANSI OOBCL notation, except for the
use of brackets and the Prime extensions discussed below.

ANSI Notation

Words: All underlined uppercase words are called keywords and are
required when the clauses containing them are used. Uppercase words
that are not underlined are optional. Uppercase words, whether
underlined or not, must be spelled correctly.

Lowercase words are generic terms used to represent COBOL words,
literals, PICTURE character-strings, comment-entries, or a complete
syntactical entry that must be supplied by the user. Where generic
terms are repeated, a number appendage to the term identifies that
term.

Level-numbers: When specific level-numbers appear in data-description-
entry formats, those specific level-numbers are required. In this
document, the forms 01, 02, and so on are used to indicate
level-numbers 1 through 9.

First Edition

DOC5039-184

Brackets and Braces: When a portion of a general format is enclosed in
brackets, [], that portion may be included or omitted at the user's
choice. Braces, {}, enclosing a portion of a general format mean that
a selection of one of the options contained within the braces must be
made. In both cases, a choice is indicated by vertically stacking the
possibilities. However, if the items within brackets themselves are
enclosed in brackets, then the header of that section or division is

quired if any other items are used. If a line within brackets i
ndented, it is part of the preceding line. When brackets or braces

enclose a portion of a format, but only one possibility is shown, the
function of the brackets or braces is to delimit that portion of the
format to which a following ellipsis applies. If an option within
braces contains only reserved words that are not keywords, then the
option is a default option (selected unless one of the other options is
exp l ic i t ly ind icated) .

The Ellipsis: In the general formats, the ellipsis represents the
position at which repetition may occur at the user's option. The
portion of the format that may be repeated is determined as follows:
scanning right to left, determine the] or } immediately to the left of
the ellipsis. Continue scanning right to left and determine the
matching [or {; the ellipsis applies to the words between this
matching pair of delimiters.

Format Punctuation: The punctuation characters comma and semicolon are
shown in some formats. They are optional and may be included or
omitted by the user. In the source program these two punctuation
characters are interchangeable. Neither one may appear immediately
preceding the first clause of an entry or paragraph.

If desired, a semicolon or comma may be used between statements in the
PROCEDURE division.

Paragraphs within the IDENTIFICATION and PROCEDURE divisions, and the
entries within the ENVIRONMENT and DATA divisions, must be terminated
by the period.

Special Characters: The characters +, -, >, <, =, when appearing in
formats, although not underlined, are required.

Examples: In the formats on page 4-3, PROGRAM-ID is a keyword that
must be used, and it must be followed by either a data-name or a
l i t e r a l t o b e s u p p l i e d b y t h e p r o g r a m m e r . T h e s o r t
file-description-entry is optional. If used, it must be followed by
one or more record descriptions, which are described in Chapter 7, THE
DATA DIVISION. The entire ENVIRONMENT division is optional; however,
if CONFIGURATION SECTION is included, ENVIRCNMENT DIVISION must be
included.

First Edition

ELEMENTS OF PRIME COBCL 74

e following Prime terms are added to ANSI notation.

The term data-name means a user-defined name for a variable that may be
subscripted or qualified.

Clause, Statement, Entry: Certain entries in the formats consist of
one or more capitalized words followed by the word "Clause,"
"Statement," or "Entry." These designate clauses or statements
described in other formats in appropriate sections of the text.

jyphens: For easier reference in the text, some lowercase words are
"ollowed bv a hyphen and a digit or letter- This mnrK "

itactical definition of th

Multiple Formats: For a
mutually exclusive options.

given COBCL verb, separate formats

CODING RULES

Program layouts must follow these rules, which are illustrated in
Figure 4-1.

1. Each line of code may have a six-digit sequence number in
positions 1-6, such that the source statements are in ascending
order. Blanks are also permitted in positions 1-6.

2. Position 7 is used for four special coding symbols. An
asterisk (*) in position 7 of the line causes that line to be
treated as a comment. Any characters may follow on that line.
The asterisk and the characters will be produced on the source
listing but serve no other purpose. If a slash (/) appears in
position 7, the current line is treated as a comment line, and
the next line will be printed at the top of a new page of the
compiler-generated listing. A hyphen (-) is used to continue
any word or literal from one line to another. Refer to
Continuation of Literals in this chapter for continuation

3. Division, section, and paragraph headers must begin in the A
Area (positions 8-11). Paragraph-names must also appear in the
A Area (at the point where they are defined).
Level-numbers may appear in the A or B Area.

4. All other program elements must be confined to Area B.

First Edition

DOC5039-184

5. Positions 73-80 are ignored by the compiler unless the -RMARGIN
option is in effect. Frequently, these positions are used to
contain the program identification.

I SEQUENCE B AREA
I - IAREA |
I / I I

I COMMENTS

—6|7| 8-111 12 72 173 80

1 12 13

Standard COBCL Coding Areas
Figure 4-1

PUNCTUATION AND SEPARATORS

A separator is a string of one or more punctuation characters. The
rules for formation of separators are:

• The punctuation character space is a separator. Anywhere a
space is used as a separator, more than one space may be used.

• The punctuation characters comma, semicolon, and period, when
immediately followed by a space, are separators. These
separators may appear in a COBCL source program only where
expl ic i t ly permit ted by the general formats, by format
punctuat ion rules, by statement and sentence structure
definitions, or by format rules. The period followed by a space
also serves as a statement terminator for conditionals.

• The punctuation characters right and left parenthesis are
separators. Parentheses may appear only in balanced pairs of
left and right parentheses delimiting subscripts, indexes,
arithmetic expressions, or conditions.

• The punctuation character quotation mark is a separator. An
opening quotation mark must be immediately preceded by a space
or left parenthesis; a closing quotation mark must be
immediately followed by a space, comma, semicolon, period, or
right parenthesis. Quotation marks may appear only in balanced
pairs delimiting nonnumeric literals except when the literal is
continued. (See Continuation of Literals below.)

First Edition

ELEMENTS OF PRIME COBOL 74

The pseudo-text delimiter = is a separator. An opening
pseudo-text delimiter must be immediately preceded by a space;
a closing pseudo-text delimiter must be immediately followed by
one of the separators space, comma, semicolon, or period. See
OOPY in Chapter 8. Pseudo-text delimiters may appear only in
balanced pairs delimiting pseudo-text with OOPY...REPLACING.

The separator space is optional immediately preceding all
separators except:

• As specified by format rules.

When the separator is a closing quotation mark. In this
case, a preceding space is considered part of the
nonnumeric literal and not a separator.

Before the opening pseudo-text delimiter, where the
preceding space is required.

The separator space may immediately follow any separator except
the opening quotation mark. In this case, a following space is
considered as part of the nonnumeric literal and not as a
separator.

Any punctuation character that appears as part of a PICTURE
character-string or numeric literal is not considered a punctuation
character, but rather an element of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by the
separators space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to
the characters that make up the contents of nonnumeric literals,
comment-entries, or comment lines.

The standard character set used by Prime is the ANSI, ASCII, eight-bit
character set. The set of characters, with octal, hexadecimal, and
punched card equivalents, is presented in Appendix A.

THE PRIME OOBQL 74 CHARACTER SET

The standard COBCL language character set, shown in Table 4-1, has 51
characters as follows: the numbers 0 through 9, the 26 uppercase
letters of the English alphabet, the space (blank), and 14 special
characters.

First Edit ion

DOC5039-184

Table 4-1
Prime OOBCL 74 Character Set

Class Character Meaning

Numeric 0 . . . 9 D i g i t
figurative constants Values null and

LOW-VALUES,ZERO,ZEROS,ZEROES zero

Alphabet ic A . . . Z ^ ^ ^ _ ^ ^ ^ ^ ^ ^ _ ^ ^ ^ Uppercase letters
3 TCl. • « £> Lowercase letters
Space Blank
Figurative constant Value blank

SPACE(S)

Special Plus sign
characters Minus sign

HBHHHHHflfli Underscore
* Asterisk (star)
= Equal sign
$ Currency sign
f Comma

•
i i

Semicolon
Period
Quotation mark• Apostrophe

(Left parenthesis
) Right parenthesis
> Greater than
< Less than
/ Slash (stroke)
Figurative constants Values quotation

QUOTE(S),HIGH-VALUE(S) and delete

First Edition

ELEMENTS OF PRIME OOBQL 74

ne Extensions

rime extends the set b
underscore character to be used.

ingle quote (apostrophe) is accepted as an equivalent of double
quote marks. Quotes preceding and following a given item must tx
identical. (Note that double quote marks and the question mark may tx
used in entering COBOL programs with the EDITOR only if other deletioi
characters have been established with the PRIMOS command TERM or the

Collating Sequence

Each character in the Prime character set has a unique value that
establishes the collating sequence for the character set. This
sequence conforms to the American Standards Code for Information
Interchange (ASCII). The characters are arranged in ascending ASCII
collating sequence in Table A-3 of Appendix A. The collating sequence
can be modified by the PROGRAM COLLATING SEQUENCE clause.

CHARACTER-STRINGS

A character-string is a character or a sequence of contiguous
characters that forms a PICTURE character-string, a COBOL word, a
literal, or a comment-entry. A character-string is delimited by one of
the separators defined above.

Picture-strings
A PICTURE character-string (picture-string) consists of certain
combinations of characters in the OOBCL character set used as a
template. See PICTURE in Chapter 7, for a description of the
picture-string and the rules governing its use. A punctuation
character that is part of a picture-string is not considered as a
punctuation character, but as a symbol in that picture-string.

First Edition

DOC5039-184

WORD FORMATION

A OOBOL word is a character-string of not more than 30 characters
chosen from the following set of 64 characters:

0 through 9 (digits)
A through Z (letters)
a through z (lowercase letters)
- (hyphen)

All words except level-numbers, section-names, segment-numbers, and
paragraph-names must contain at least one alphabetic character or a
hyphen. A word must not begin or end with a hyphen. It is delimited
by a space, or by proper punctuation. A word may contain more than one
embedded hyphen; consecutive embedded hyphens are also permitted.

Examples of valid words are:

ITEM
1STTTEM
1ST-ITEM

All words are either reserved words or programmer-defined words.

RESERVED WORDS

A reserved word is one of a specified list of words that may be used in
OOBOL source programs, but which may not appear as programmer-defined
words. They may be used only as specified in the general formats. The
types of reserved words are:

• Keywords

• Optional words

• Connectives

• Figurative constants

• Special-character words

• Implementor-names

Prime COBOL 74 reserved words are listed in Table A-2 of Appendix A.

First Edition

ELEMENTS OF PRIME COBOL 74

A keyword is required when the statement in which the word appears is
used in a source program. Within each statement format in this manual,
such words are uppercase and underlined.

Optional Words

Within each format, uppercase words that are not underlined are
optional words. The presence or absence of an optional word does not
alter the meaning of the OOBCL program in which it appears, but, when
present, the word improves readability of the program.

Connectives

The three types of connectives are:

• Qualifier connectives OF, IN, which are used to associate a
data-name, condition-name, text-name, or paragraph-name with its
qua l i fie r. Qua l i fie r s a re d i scussed i n QUAL IF ICAT ION,
SUBSCRIPTING, AND INDEXING below.

Series connectives comma (,) or semicolon (;), which may be used
to link two or more consecutive operands.

• Logical connectives AND, OR, which are used in the formation of
condi t ions.

Figurative Constants

Figurative constants are reserved words used to name and reference
specific constant values. A figurative constant represents as many
instances of the associated character as required in the context of the
statement. The singular and plural forms are equivalent and may be
used interchangeably.

A figurative constant may be used wherever "literal" appears in a
format description; except that, whenever the literal is restricted to
numeric characters, the only figurative constant permitted is ZERO
(ZEROS, ZEROES). A figurative constant must not be bounded by
quotation marks.

First Edition

DOC5039-184

Figurative constants are:

Constant

ZERO
ZEROS
ZEROES

LOW-VALUE
LOW-VALUES

HIGH-VALUE
HIGH-VALUES

QUOTE
QUOTES

SPACE
SPACES

Meaninc

The ASCII character represented by hexadecimal BO

The character whose hexadecimal representation is 00
(lowest character in the ASCII collating sequence)

The character whose hexadecimal representation is FF
(highest character in the ASCII collating sequence)

The quotation mark, whose hexadecimal representation
is A2 (")

The blank character represented by hexadecimal AO

ALL literal Represents one or more of the string of characters
comprising the literal. The literal must be either
a nonnumeric literal or a figurative constant other
than ALL literal. When a figurative constant is
used, the word ALL is redundant and is used for
readability only.

Special-character Words

The arithmetic operators and relation characters are reserved words,
They are:

Operators Meaninc

Ar i thmet ic :

+

*
/* *

Addi t ion
Subtraction
M u l t i p l i c a t i o n
D iv i s i on
Exponentiation

Relat ion:

<
>

Is equal to
Is less than
Is greater than

First Edition

ELEMENTS OF PRIME OOBQL 74

Impl ement or-names

Implementor-names include device-names and switch-names unique to Prime
computers. These are listed in Chapter 6, THE ENVIRONMENT DIVISION.

PROGRAMMER-DEFINED WORDS

A programmer-defined word is one supplied by the user to satisfy the
format of a clause or statement. Each is constructed according to the
rules for word formation. The categories for these words include:

Level-numbers

Data-names

File-names

Condition-names

Mnemoni c-names

Paragraph-names

Section-names

Segment-number s

With the exception of paragraph-names, segment-numbers, and
section-names, all programmer-defined words must contain at least one
alphabetic character, an underscore,

If a programmer-defined word is not unique, there must be a unique
method of referencing it by using qualifiers (for example, TAX-RATE IN
STATE-TABLE). Qualifiers are explained in QUALIFICATION, SUBSCRIPTING,
AND INDEXING belcw.

Level-numbers

Level-numbers are one- or two-digit, programmer-defined numbers in the
DATA division. They group items within the data hierarchy of the
Record Description.

The range of levels is 01 through 49, and 66, 77, and 88.
Level-numbers 1 through 9 may be written as single digits. The use of
level numbers is discussed in Chapter 7, THE DATA DIVISION.

First Edition

DOC5039-184

Data-names

A data-name is a word made up by the user to identify a data item used
in a program. A data-name always refers to a field of data, not to a
particular value. It is formulated according to the rules for word
formation above. It must not be identical to a reserved word.

Data-names are used in all divisions of a OOBCL program. When
referenced in the PROCEDURE division, a data-name, if not unique, must
be followed by a syntactically correct combination of qualifiers,
subscripts, or indexes necessary to ensure uniqueness.

records similar class

File-names

A file is a collection of data records of a similar class or
application. A file-name is preceded by an FD entry in the DATA
division's FILE SECTION. Rules for composition of the name are
identical to those for data-names. (See WORD FORMATION above.)
References to a file-name appear in PROCEDURE division 1-0 statements
as well as in the ENVIRONMENT and DATA divisions.

Condi ti on-names

A condition-name is a name assigned to a specific value, set of values,
or range of values, within a complete set of values that a data item
may assume. The data item is called a conditional variable.
Condition-names are allowed in the FILE, WORKING-STORAGE, and LINKAGE
sections of the DATA division, as well as in the SPECIAL-NAMES
paragraph of the ENVIRONMENT division.
A condition-name is defined within the DATA division in a level-88
entry subordinate to the associated data item name, or in the
SPECIAL-NAMES paragraph, assigned to the ON STATUS or OFF STATUS of
switches. Rules for the formation of condition-name words are the same
as those specified in WORD FORMATION. Additional information
concerning condition-names and procedural statements employing them is
given in the chapters on the DATA and PROCEDURE divisions.

Mnemoni c-names

A mnemonic-name is assigned in the ENVIRCNMENT division in the
SPECIAL-NAMES paragraph for reference in ACCEPT or DISPLAY statements
or in switch-condition tests. A mnemonic-name is composed according to
the rules for word formation above.

First Edition

ELEMENTS OF PRIME OOBOi 74

Paragraph-names and Section-names
These are words that identify paragraphs and sections, respectively, in
the PROCETXJRE division. They may be up to 30 characters long, and may
be all alphabetic, all numeric, or alphanumeric.

Examples of valid paragraph-names are:

050-NEXT-ITEM
050
NEXT-ITEM

Segment-number s

A segment-number must be an integer between 0 and 99.

LITERALS

A literal is a programmer-defined constant value. It is not identified
by a data-name in a program, but is completely defined by its own
identity. A literal is either nonnumeric or numeric.

Nonnumeric Literals

A nonnumeric literal must be delimited by matching quotation marks or
apostrophes. (Note that double quote marks may be used in entering a
COBOL program with the EDITOR only if the user has changed the erase
character from quote marks to some other character with the PRIMOS
command TERM or the EDITOR command SYMBOL.) All spaces enclosed by the
delimiters are included as part of the literal. The length of a
nonnumeric literal is computed excluding the delimiters. A nonnumeric
literal must not exceed 120 characters in length. Minimum length is 1.

A nonnumeric literal may be any combination of characters in the ASCII
se t .

If the delimiter itself is to be used within the literal string, it
should be written twice. The last example below shows a single quote
within a literal delimited by single quotes.

The following are examples of nonnumeric literals:

"ILLEGAL CONTROL CARD"

First Edition

DOC5039-184

"3.1414"

"DO'S AND DON'TS'

Numeric Literals

A numeric literal must contain at least one and not more than 18
digits. A numeric literal may consist of the characters (digits) 0
through 9 (optionally preceded by a sign) and a decimal point, or a
comma in the case DECIMAL-POINT IS OOMMA discussed below. It may
contain only one sign character and only one decimal point. The sign,
if present, must appear as the leftmost character of the numeric
literal. If a numeric literal is unsigned, it is assumed to be
pos i t i ve .

A decimal point may appear anywhere within the numeric literal, except
as the rightmost character. If a numeric literal does not contain a
decimal point, it is considered to be an integer.

If a literal conforms to the rules for the formation of numeric
literals, but is enclosed in quotation marks, it is a nonnumeric
literal and it is treated as such by the compiler.

The following are examples of numeric literals:

+1011 3.14159 -.333

The last example uses floating-point format, a Prime extension that is
described in the section on DATA REPRESENTATION AND ALIGNMENT in this
chapter.

By use of the clause DECIMAL-POINT IS COMMA, the functions of the
period and comma characters may be interchanged, putting the European
notation into effect. In this case, for example, the literal value one
thousand and one tenth would be written as 1.000,1.

First Edition

ELEMENTS OF PRIME COBCL 74

Continuation of Literals

When a literal is too long to fit on one line, the following
conventions apply to the next line of coding (continuation line):

A hyphen in the indicator area (column 7) of a line indicates
that the first nonblank character in area B of the current line
is the successor of the last nonblank character of the preceding
line without any intervening space.

If the continued line contains a nonnumeric literal without
closing quotation mark, the first nonblank character in area B
on the continuation line must be a quotation mark, and the
continuation starts with the character immediately after that
quotation mark. All spaces at the end of the continued line are
considered part of the literal.

Area A of a continuation line must be blank.

■ If there is no hyphen in the indicator area of a line, it is
assumed that the last character in the preceding line is
followed by a space.

The next two lines illustrate continuation of a nonnumeric
l i t e r a l .

MOVE 'ICW IS THE TIME FOR ALL GOOD MEN TO OOME TO THE AID OF
"THE PARTY.' TO HEADER.

DATA LEVELS

The two levels of data are group and elementary.

Group Item

A group item is defined as one having further subdivisions, so that it
contains one or more elementary items or other groups. The maximum
size of a group item is given in Appendix J.

Elementary Item

An elementary item is a data item containing no subordinate items. An
elementary item must contain a PICTURE clause, except when usage is
described as COMPUTATIONAL, OOMPUTATIONAL-1, OOMPUTATIONAL-2, or INDEX.
The maximum size of an elementary item is given in Appendix J.

First Edit ion

DOC5039-184

CLASSES AND CATEGORIES OF DATA

The classes of data are: alphabetic, numeric, and alphanumeric.
Within these, the categories of data are: alphabetic, numeric, numeric
edited, alphanumeric, and alphanumeric edited. Every elementary item
except an index data item belongs to a class and to a category, as
defined by its PICTURE or USAGE clause.

The category of a data item is used to determine the validity of
operations such as MOVE and COMPUTE, and for alignment. The categories
have the following characteristics (more detail is given under the
PICTURE clause in Chapter 7) .

Alphabetic Item

An alphabetic item consists of any combination of the 26 uppercase
characters of the English alphabet and the space character. It is
defined by PICTURE A.

Numeric Item

A numeric item consists only of digits and no more than one assumed
decimal point and an optional sign. It is defined by PICTURE 9 or by
USAGE IS COMPUTATIONAL, COMPUTATIONAL-1, QOMPUTATTONAL-2
OOMPUTATIONAL-3.

Numeric Edited Item

An edited numeric item contains only digits and special editing
characters or editing characters alone, as described under PICTURE in
Chapter 7. It is defined by PICTURE 9 plus editing characters.

Alphanumeric Item

An alphanumeric item consists of any combination of ANSI characters
plus lowercase letters, defined by PICTURE X, A, or 9.

Alphanumeric Edited Item

This is an alphanumeric item defined by PICTURE X or PICTURE A plus
editing characters described under PICTURE in Chapter 7.

First Edition

ELEMENTS OF PRIME COBOL 74

Relationship of Classes and Categories

The class rather than the category is used in some relation conditions,
and for determining validity of operations on group items. For
alphabetic and numeric elementary items, classes and categories are the
same. For elementary items, the alphanumeric class includes the
categories of alphanumeric edited, numeric edited, and alphanumeric.
The class of a group item is treated at execution time as alphanumeric
regardless of the class of elementary items subordinate to that group
item. Table 4-2 depicts the relationship of the class and categories
of data items.

Table 4-2
Classes and Categories of DATA

Level of Data Class Category

Elementary Alphabet ic Alphabet ic

Numeric Numeric

Alphanumeric Numeric Edited

Alphanumeric Edited

Alphanumeric

Group Alphanumeric Alphabet ic

Numeric

Numeric Edited

Alphanumeric Edited

Alphanumeric

First Edition

DOC5039-184

DATA REPRESENTATION AND ALIGNMENT

Data is further categorized by the format in which it is stored in the
computer. The formats are: display or unpacked decimal, packed
decimal, binary, index, and floating-point. These formats are
specified by the USAGE clause, as outlined below.

USAGE Machine

DISPLAY
computation;
computational
INDEX

Unpacked decimal
acked deci

Binary
Binary
single-*

Note

Data items of all formats may be used together in computations,
although time is often saved by assuring that all data items
used in any given computation are in the same format.

OOBCL operates on five types of decimal data: leading separate sign,
trailing separate sign, packed decimal, leading embedded sign, and
trailing embedded sign. The last two types may be entered with an
overpunch. Table A-10 in Appendix A summarizes the characteristics of
each decimal data type and the sign values.

Unpacked Decimal Item (DISPLAY)

An unpacked decimal item is one in which one byte (eight binary bits)
is employed to represent one digit as well as the sign. An exception
is such an item with SIGN IS SEPARATE clause, discussed in Chapter 7.
The PICTURE clause for an external decimal item may contain only 9, S,
V, and P. The USAGE for an unpacked decimal item is always DISPLAY,
whether implicit or explicit. Maximum size is 18 digits. The storage
of such an item may be represented in Figure 4-2.

Unpacked Decimal Storage
Figure 4-2

First Edition

ELEMENTS OF PRIME OOBCL 74

Packed Decimal Item (O0MP-

It is defined by the OOMPUTATIONAL-3 or OOMP-3 USAGE clause,
size is 18 digits.

Maxim

Its PIC may contain only 9, S, V, P. A packed decimal item defined by
n nines in its PICTURE occupies (n/2)+l bytes in memory. All bytes,
except the rightmost, contain a pair of digits.

The rightmost half-byte of a packed item contains a representation of
the sign. Bit string 1100 represents a positive sign, 1101 represents
a negative sign. Four bits are always reserved for the sign in a
packed field, even if the picture lacks the leading character S. For
this reason, the optimal space allocation for a packed decimal item is
an odd-size field. The storage of such an item may be represented in
Figure 4-3.

dmal Storage
ire 4-3

Binary Item (OOMP)

A binary item uses the base-2 system to represent an integer. The item
occupies the following storage: 16 bits if up to 4 nines are specified
in the PICTURE clause, 32 bits if 5-9 nines are specified and 64 bits
if 10-18 nines are specified. The maximum size is 18 digits. If no
PICTURE is specified, the default is 16 bits. The leftmost bit of the
storage area is the operational sign: 0 is positive, 1 is negative.
(COMPUTATIONAL data types are stored in two's-complement form.) The
sign is optional in the PICTURE clause. If it is omitted, the value in
this field is always treated as positive. USAGE IS COMPUTATIONAL must
be specified. Since this data type is represented in hardware by a
signed data type (fixed binary) , extra code is required to return the
absolute value for every reference to this field when it is declared
without a sign. In addition, if the PICTURE clause of OOMP items
specifies more than nine digit positions, or specifies positions to the
right of the decimal point, extra code is required to convert the
contents of such fields when they are referenced. The storage of this
item may be represented in Figure 4-4.

First Edition

DOC5039-184

Binary Storage (PIC S9(9))
Figure 4-4

OOMP items are aligned by the compiler on halfword (16-bit) boundaries.
Sixteen-bit binary items have a range of -32768 to +32767. Thirty-two-
bit binary items have a range of -2147483648 to +2147483647. (These
two items correspond to INTBGER*2 and INTBGER*4, respectively, in
FORTRAN.) Sixty-four-bit binary items are converted to decimal when
referenced and therefore have the same range as 18-digit decimal data,
that is, a PIC of from 9(18) to V9(18).

Index Item

An index item is defined with USAGE IS INDEX or INDEXED BY. It may not
have a PICTURE clause. It is a 64-bit signed binary item, the first
half of which contains the occurrence number, the last half of which
contains the offset. The maximum value of index items is discussed in
Appendix J. The storage of this item may be represented by Figure 4-5.

First Edition

ELEMENTS OF PRIME COBOL 74

Index Storage
Figure 4-5

First Edition

DOC5039-184

OTTATTONAL-1 or COMP-1. No PICTURE clause is allowed. The item
upies 32 bits of which bit 1 (the leftmost bit) is the sign, bits

-24 are the mantissa, and bits 25-32 contain the exponent. The sign
nd mantissa are treated as a two's-complement number, and the exponent
s an unsigned excess-128 binary exponent. Effective precision is
etween 22 and 23 bits (+ 8,388,607). The exponent range is -128 to
127 (10 to the +38 power). The storage of this item may be
represented in Figure 4-6.

SlpiylMl̂ ::;fW^s?i : 1.' o> 11 r f l fl to R ®I§Jiti sjiji ttM«Wa\»|»sMi/SAGE clause of
ATIONAL-2 or COMP-2. No PICTURE clause is allowed. The item

cupies 64 bits of which bit 1 (the leftmost bit) is the sign, bits
48 are the mantissa, and bits 49-64 contain the exponent. The sign
d mantissa are treated as a two's complement number, and the exponent
an unsigned excess-128 binary exponent. Effective precision is

tween 46 and 47 bits (+ 737,488,355,327) . The exponent range is
t h i s-M&&3 .11® BWifcyMn 11.0) igs> iaijig: E3SKmeK3f oyaj&BpgjgJB ■Hfig Ew l̂fe Eja

First Edition

ELEMENTS OF PRIME OOBCL 74

Double-precision Floating-point Storage
Figure 4-7

floating-point format is a Prime extension to ANSI COBCL intended fo
nse in scientific calculations, when very large or very small number
ust be represented, or when the user wishes to call FORTRAN or PLl
ubroutines that operate on floating-point (real) numbers.

n a OOBQL statement, the format of a floating-point number is:

T(±)] manii ssa E [(±) lexponent

.*.e mantissa consists of one to seven digits for COMP-1 or one to 14
characters for OOMP-2 with a required decimal point. Examples are:

MOVE 1.23456E-10 TO TTEM1.
F TEST! > 4.0E14 PERFORM 050-EXCESS.

First Edition

DOC5039-184

Care should be exercised when using floating-point oper
mputations with other operand types. In order to retain the
ecision of standard COBCL operand types, OOMP-1 and 00MP-2

operands may be converted to COBCL data types. In the proce

Ie contents of the OOMP-1 or OOMP-2 operands may be truncat.

nee the range of floating-point operands exceeds that
andard COBOL operand types. On the other hand, since 1
ecision of standard COBCL operands (1 to 18 digits) exce<
at of floating-point operands (7 or 14 digits), precision i
lost when conversion to floating-point is required.

a final caution, due to the nature of conversion algorithi.
ed operations can cause the "nines syndrome," where, for
mple, a value of 41 at the beginning of a mixed operation

may end up as 40.9999.

In general, it is a good rule to use floating-point operands in
OBCL context only when strictly required, as is the case
n operands with extremely large ranges are required, or when
OBOL program interacts with a FORTRAN or PL/I subset G
gram.

mien using floating-point numbers, or results of operations
using floating-point numbers, in relational tests, use tests of
GREATER THAN or LESS THAN, not of EQUALS, or round the numbers< r,.._ ,._•„,, ,_ t-psting them.

Standard Alignment Rules

The Prime COBCL compiler automatically aligns data as needed at
compilation time. DISPLAY and OOMP-3 items are aligned on byte
boundaries, with the exceptions discussed in the next section. All
other items are aligned on 16-bit boundaries. At execution time, the
standard rules by which the compiler positions data within an
elementary item depend on the category of the receiving item. These
rules are:

1. If the receiving data item is described as numeric:

• The data is aligned by decimal point and is moved to the
r e c e i v i n g d i g i t p o s i t i o n s w i t h z e r o fi l l i n g o r
truncation at either end, as required.

• When an assumed decimal point is not explicitly
specified, the data item is treated as if it had an
assumed decimal point immediate ly fo l lowing i ts
rightmost digit. It is aligned as in the rule above.

First Edition

ELEMENTS OF PRIME COBCL 74

2. If the receiving data item is numeric edited, the data moved to
the edited data item is aligned by decimal point. Zero filling
or truncation at either end occurs as required except where
editing requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a
numeric edited data item), alphanumeric edited, or alphabetic,
the sending data is aligned at the leftmost character position
in the receiving data item. Space filling or truncation occurs
to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these
standard rules are modified as described under JUSTIFIED in Chapter 7.

The alignment examples belcw show the results of moving various length
alphabetic and alphanumeric items into an 11-character alphanumeric
field, (b = blank)

Data to Be
Stored

Receiving Field Receiving Field
Before Transfer After Transfer

ABC
ABCDEF1234
AAABBBCCCDD
AAABBBCCCDDDE

XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX

ABCbbbbbbbb
ABGDEF1234b
AAABBBCCCDD
AAABBBCCCDD

The examples below show the results of moving various length numeric
items into a six-character numeric field. (A = implied decimal point.)

Data to Be
Stored

Receiving Field Receiving Field
Before Transfer After Transfer

3~4
345^678
12345^67890

1234567890
1234567890
3 "4

999V999
999V999
999V999
999V999
999V999
9999V99
999999

003~400
345~678
345^678
034~000
890~000
7890~00
000003

3 ■ ..'••. '
e compiler automatically aligns certain elements on 16-bit boundaries
order to allow substructures to be passed to called programs

correctly. Alignment follows these rules:
Each level-01
boundary.

or level-77 item is

First Edition

DOC5039-184

Each group item subordinate to a level-01 item is aligned
the largest boundary required by any item contained in it:

OOBQL

DISPLAY
OOMP
OOMP-1
OOMP-2
QOMP-3

Byte
16 bits
16 bits
16 bits
Byte

Compiler-generated filler is inserted into structures where
necessary to make substructures align on the proper boundary.

If the -SLACKBYTES option is specified at compile time, a
diagnostic is issued by the compiler when filler is added to
align a substructure. If the -MAP option is specified, each
d a t a i t e m s o a l i g n e d i s i n d i c a t e d b y t h e p h r a s e
COMPILER-ALIGNED.

Ixamples: The following structure is to be passed to a called progr
i and B may be byte-aligned, while C requires 16-bit alignment:

01 STRUCT.
02 A
02 S2.

03 B
03 C

PIC X.

PIC X.
OOMP.

compiler actually allocates the structure as:

01 STRUCl.
02 A
02 FILLER
02 S2.

PIC X.
PIC X.

First Edition

ELEMENTS OF PRIME COBCL 74

s passed to a called program, this automatic alignment allows
the programmer to pass the subgroup (a Prime extension) because it is
already aligned to correspond to a level-01 or level-77 group in the
called program. Thus the argument can be described as a level-01 group
in the called program:

LINKAGE SECTION.
01 M.

02 B PIC X.
02 C COMP.

PROCEDURE DIVISION US

ALGEBRAIC SIGNS

Algebraic signs fall into two categories: operational signs and
editing signs. Operational signs are associated with signed numeric
data items and signed numeric literals to indicate their algebraic
properties. Editing signs appear on edited reports to identify the
sign of the item.

The SIGN clause permits the programmer to state explicitly the location
of the operational sign. Editing signs are inserted into a data item
with the editing symbols of the PICTURE clause.

QUALIFICATION, SUBSCRIPTING, AND INDEXING

Qualification of Names

The user must be able to identify, uniquely, every name that defines an
element in a COBOL source program. The name may be unique in its
spelling or hyphenation, or unique reference may be accomplished by use
of qualifier names.

Qualifiers are names of higher-level items (that
level-number) preceded by the word OF or IN. A

i s ,
series

of a lower
of itemslevel-number) preceded by the word OF or IN. A series of items

connected by OFs or INs may qualify one name. The general formats for
qualification are:

Format 1

data-name-1

condition-name
data-name-2

First Edition

DOC5039-184

Format 2

paragraph-name section-name

Format 3

H V

'UFD-name'

Format 4

status-name OF switch-name

The rules for qualification are:

• Each qualifier must be of a higher level and within the same
hierarchy as the name it follows.

• The same name must not appear at two levels in the same
hierarchy.

• If a data-name or a condition-name is assigned to more than one
item in a source program, the name must be qualified each time
it is referred to.

• Paragraph-names may be qualified only by their section-name.
Therefore, two identical paragraph-names should not appear in
the same section. When a paragraph is qualified by i
section-name, the word SECTION must not appear. t
paragraph-name need not be qualified when referred to within the
same section.

• A name can be qualified even though it does not need
qualification. If more than one combination of qualifiers can
make a name unique, any combination can be used. The complete
set of qualifiers for a data-name must not be the same as any
partial set of qualifiers for another data-name.

• The maximum number of qualifiers is one for a paragraph-name and
50 for a data-name or condition-name. File-names may be
qualified only in a COPY statement. Mnemonic-names and
section-names must not be qualified.

In the following example, the data-name YEAR will require qualification
for reference because it defines two elementary items, one in HIRE-DATE
and one in TERMINATION-DATE.

First Edition

ELEMENTS OF PRIME COBOL 74

01 EMPLOYEE-REOORD
05 NAME
05 ADDRESS
05 HIRE-DATE

10 YEAR
10 MONTH
10 DAYY

05 TERMINATION-DATE
10 YEAR
10 MONTH
10 DAYY

YEAR OF HIRE-DATE is a qualified reference that differentiates between
year fields in HIRE-DATE and TERMINATION-DATE. YEAR OF HIRE-DATE IN
EMPLOYEE-RECORD is also a valid qualifier for the first YEAR field.

Subscripts can be used only when reference is made to an individual
element within a list or table of like elements that have not been
assigned individual data-names. (See the OCCURS clause in Chapters 7
and 10.)

The format for subscripting is:

data-name

condition-name
(subscript-1 [, subscript-2 [, subscript-n] •••])

Subscripting is discussed in more detail in Chapter 10.

The subscript can be represented by a numeric literal, by a numeric
data-name, or by an arithmetic expression. The data-name subscripts
may themselves be qualified or subscripted.
The subscript may be signed. It must have a positive integer value.
The lowest possible subscript value is 1. This value points to the
first element of the table. The next elements of the table are pointed
to in turn by subscripts whose values are 2, 3, and so on. The highest
permissible subscript value, in any particular case, is the maximum
number of occurrences of the item as specified in the OCCURS clause.
Literal subscripts are range-checked at compile time. Variable
subscripts can be checked at runtime if the -RANGE option is specified
at compile time.

The subscript that identifies the table element is delimited by the
balanced pair of separators, left parenthesis and right parenthesis,
following the table element data-name. When more than one subscript is
required, they are written in the order of successively less inclusive
dimensions of the table organization.

First Edition

DOC5039-184

Indexinc

References can be made to individual elements within a table of like
elements by specifying indexing for that reference. Indexing differs
from subscripting because it uses as a pointer an item that may refer
to one table only and thus may be used implicitly by some statements.
An index is assigned to a level of a table by using the INDEXED BY
phrase in the definition of the table. A name given in the INDEXED BY
phrase is known as an index-name and is used to refer to the assigned
index. The value of an index corresponds to the occurrence number of
an element in the associated table. An index-name must be initialized
before it is used in a table reference. An index-name can be given an
initial value by a SET, a SEARCH ALL, or a Format-4 PERFORM statement.

The general format for indexing is:

data-name] f index-name-1
[(j literal-1condition-name J [arith-expr-1

literal-2

index-name-2
literal-3
arith-expr-3

literal-4

arith-expr-4

mdex-name-3
literal-5
arith-expr-5

literal-6

arlth-expr-6

Prime OOBOL supports two types of indexing: direct and relative.
Direct indexing is specified by using an index-name in the form of a
subscript. Relative indexing uses a computed index value. It is
specified when the index-name is followed by a space, one of the
operators + or -, another space, and an unsigned integer numeric
l i teral, al l delimited by left parenthesis and right parenthesis
following the table name. An example is:

TABLE(INDEX-NAME + 1)

The occurrence number resulting from relative indexing is determined by
incrementing or decrementing the index by the value of the literal.

When more than one index-name is required, they are written in the
order of successively less inclusive dimensions of the data
organizat ion.

When a statement that refers to an indexed table element is executed,
the value in the associated index must be neither less than 1, nor
greater than the limit specified by the OCCURS clause. This
restr ict ion also appl ies to the values result ing from relat ive
indexing.

Indexing is discussed in more detail in Chapter 10.

First Edition

ELEMENTS OF PRIME COBOL 74

Restrictions on Qualification, Subscripting, and Indexinc

Indexing is not permitted where subscripting is not permitted.

An index may be modified only by the SET, SEARCH, and Format-4
PERFORM statements.

Data items described by the USAGE IS INDEX clause permit storage
of the values associated with index-names. Such data items are
called index data items.

ARITHMETIC EXPRESSIONS

D e fi n i t i o n

An arithmetic expression must be one of the following:

• A name of a numeric elementary item

• A numeric literal

• Such names and literals separated by arithmetic operators

• Two arithmetic expressions separated by an arithmetic operator

• An arithmetic expression enclosed in parentheses

Any arithmetic expression may be preceded by a unary operator. The
permissible combinations of variables, numeric literals, arithmetic
operators, and parentheses are given in Table 4-3.

Table 4-3
Symbol Combinations in Arithmetic Expressions

(P = Permitted, X = Invalid)

F i r s t
Symbol

Var iab le
*/ + _**
Unary + or -

Second j
Variable */ + -** Unary + or - (

DOC5039-184

Names and literals appearing in an arithmetic expression must represent
either numeric elementary items or numeric literals on which arithmetic
may be performed.

Arithmetic Operators

The characters below represent the binary and unary
operators. They must be preceded by at least one space.

a r i thmet i c

Binary Arithmetic
Operators

Unary Arithmetic
Operators

Parentheses

Meaning
Addi t ion
Subtract ion
M u l t i p l i c a t i o n
D iv i s i on
Exponentiation

Meaning
The effect of multiplication
by +1 (sign normalization).

The effect of multiplication
by -1 (sign inversion).

Meaning
Used to enclose expressions to
control the sequence in which
conditions are evaluated.

Rules

Follow these general rules for arithmetic expressions:

• Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within
parentheses are evaluated first. Within nested parentheses,
evaluation proceeds from the least inclusive set to the most
inclusive set.

• When parentheses are not used, the following hierarchical order
of execution is implied:

1. Unary plus and minus

2. Exponentiation

First Edition

ELEMENTS OF PRIME OOBOL 74

3. Multiplication and division

4. Addition and subtraction

The order of execution of consecutive operations of the same
hierarchical level is from left to right. Example:

A + B/ (C - D * E)

This expression is evaluated in the following sequence:

1. Compute the product D times E, considered as
intermediate result Rl.

2. Compute intermediate result R2 as the difference C - Rl.

3. Divide B by R2, providing intermediate result R3.

4. Compute the final result by addition of A to R3.

Without parentheses, the expression A+B/C-D*E is eval
uated as:

Rl = B/C
R2 = D * E
R3 = A + Rl

The final result is R3 - R2.

When parentheses are employed, the following punctuation rules
should be used:

1. A left parenthesis is preceded by one or more spaces.

2. A right parenthesis is followed by one or more spaces.

Operators, variables, and parentheses may be combined in
arithmetic expressions as summarized in Table 4-3.

An arithmetic expression may begin only with one of the symbols
(,+,-, or a variable; it may end only with a) or a variable.
Each left parenthesis is to the left of its corresponding right
parenthesis.

Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements. These have several common features.

The data descriptions of the operands need not be the same; any
necessary conversion and decimal point alignment is supplied
throughout the calculation.

First Edition

DOC5039-184

The maximum size of each operand is 18 decimal digits. The
composite of operands, which is a hypothetical data item
resulting from the super imposition of operands aligned on their
decimal points, must not contain more than 18 decimal digits.
An example is given in Chapter 8 in the section on Arithmetic
Statements in the PROCEDURE Division.

When a sending and a receiving item in an arithmetic statement or an
INSPECT, MOVE, SET, STRING, UNSTRING, or other statements share a part
of their storage areas, the result of the execution of such a statement
is undefined and unpredictable.

CONDITIONAL EXPRESSIONS

D e fi n i t i o n

Conditional expressions identify conditions that are tested to enable
the object program to select between alternate paths of control
depending upon the truth value of the condition.

Simple Conditions

The simple condit ions are the relation, class, condit ion-name,
switch-status, and sign conditions. A simple condition has a truth
value of "true" or "false." The inclusion in parentheses of simple
conditions does not change the simple truth value.

Relation Condition: A relation condition causes a comparison of two
operands. A relation condition has these formats:

Format 1: operand relation operand

The relation is a relational operator: equals, greater, less, or the
negation of one of these. A relation condition has a truth value of
"true" if the relation exists between the operands. The operand is a
data-name, literal, arithmetic expression, or figurative-constant.

First Edition

ELEMENTS OF PRIME OOBOL 74

The general format of a relation condition is as follows:

data-name-1
literal-1
arith-expr-1
index-name-1

IS [NOT] GREATER THAN
IS [NOJ_] LESS THAN
IS f NOT] EQUAL TO
IS [NOJ_] >
IS fNOTK
IS [NOT] =

data-name-2
literal-2
arith-expr-2
index-name-2

Although required where indicated in formats, the relational
characters <, >, and = are not underlined in this text.

The relational operator specifies the type of comparison to be made in
a relation condition. A space must precede and follow each reserved
word comprising the relational operator. When used, NOT and the next
keyword or relation character form one relational operator defining the
comparison to be executed for truth value. Thus NOT EQUAL is a truth
test for an unequal comparison; NOT GREATER is a truth test for an
equal or less comparison.

Comparison of two numeric operands of different formats is permitted.
If either operand is nonnumeric, the comparison is nonnumeric.

• Numeric comparisons: For elementary operands whose class is
numeric, a comparison is made with respect to their algebraic
value. The length of the operands is not significant. Zero is
considered a unique value regardless of the sign. It is neither
positive nor negative, and will fail these sign tests.

Comparison of these operands is permitted regardless of their
usage. Unsigned numeric operands are considered positive.

The data operands are compared after alignment of their decimal
points. An index-name or index item may appear in a numeric
comparison.

» Nonnumeric comparisons: For nonnumeric operands, a comparison
is made with respect to the Prime collating sequence of
characters. The value associated with each ASCII character in
the Prime computer is the basis for the comparison. (Refer to
Appendix A for all ASCII character representations and the Prime
collating sequence.)

First Edition

DOC5039-184

Comparison proceeds by comparing characters in corresponding
character positions starting from the high-order (left) end and
continuing unti l either a pair of unequal characters is
encountered or the low-order end of the operand is reached. The
operands are determined to be equal if all pairs of characters
compare equally through the last pair, when the low-order end is
reached.

The first pair of unequal characters encountered is compared to
determine their relative position in the collating sequence.
The operand that contains the character positioned higher in the
collating sequence is considered to be the greater operand.

The size of an operand is the total number of characters in the
operand.

If the operands are of unequal size, comparison proceeds as
though the shorter operand were extended on the right by
sufficient spaces to make the operands of equal size.

If one operand is a literal, the data class of the two operands
must be the same.

If one of the operands is specified as numeric, it must be an
integer data item or an integer literal and:

If the nonnumeric operand is an elementary data item or a
nonnumeric literal, the numeric operand is treated as
though it were an elementary alphanumeric data item of
the same size as the numeric data item.

If the nonnumeric operand is a group item, the numeric
operand is treated as though it were a nonnumeric item of
the same size as the numeric data item.

A noninteger numeric operand cannot be compared to a
nonnumeric operand.

Numeric and nonnumeric operands may be compared only when
their usage is the same.

Class Condition: The class condition determines whether the contents
of a data-name are numeric or alphabetic. A numeric data item consists
entirely of the digits 0 through 9, with or without the operational
sign. An alphabetic data item consists entirely of the uppercase
alphabetic characters and the space. The general format for the class
conditions is:

data-name IS [NOT]
NUMERIC

ALPHABETIC

First Edition

ELEMENTS OF PRIME COBOL 74

The data-name must be described, implicitly or explicitly, as USAGE IS
DISPLAY or USAGE IS OOMPUTATIONAL-3.

The NUMERIC test cannot be used with a data-name described as
alphabetic or as a group item composed of elementary items whose data
description indicates the presence of operational signs.

If the data description of the data-name being tested does not contain
an operational sign, the data-name is determined to be numeric only if
the contents are numeric and an operational sign is not present.

If the data description of the data-name being tested does contain an
operational sign, the data-name is determined to be numeric only if the
contents are numeric and a valid operational sign is present.

The ALPHABETIC test cannot be used with a data-name described as
numeric. The data-name being tested is determined to be alphabetic
only if the contents consist of any combination of the uppercase
alphabetic characters and the space.

Condition-name Condition: In a condition-name condition, a conditional
variable is tested to determine whether or not its value is equal to a
value associated with one of its condition-names in a level-88 entry of
the DATA division. The general format for the condition-name statement
is as follows.

[NOT] condition-name

If the condition-name is associated with a range or ranges of values,
then the conditional variable is tested to determine whether or not its
value falls in this range, including the end values. (See Chapter 7
for details.)

The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

The result of the test is true if the content of the field associated
with the condition-name equals one of the values specified for that
condi ti on-name.

Switch-status Condition: A switch-status condition determines the ON
or OFF status of a switch. The switch-name and the ON or OFF value
associated with the condition must be named in the SPECIAL-NAMES
paragraph of the ENVIROIMENT division. The general format for the
switch-status statement is as follows:

[NOT] status-name

The result of the test is true if the switch is set to the CN or OFF
status associated with the switch in the SPECIAL-NAMES paragraph.

First Edition

DOC5039-184

Sign Condition: The sign condition determines whether or not the
algebraic value of an arithmetic expression is less than, greater than,
or equal to 0. The general format for a sign condition is as follows:

data-name
MS [NOT]-j NEGATIVE

a r i t h - e x p r J [Z E R O

POSITIVE

Complex Conditions

A complex condition is formed by combining simple conditions, combined
conditions and/or complex conditions with logical connectors (logical
operators AND and OR), or by negating these conditions with logical
negation (the logical operator NOT). The truth of a complex condition
is calculated as described in Condition Evaluation Rules below. The
logical operators are the following.

L o g i c a l O p e r a t o r M e a n i n g

AND Logical conjunct ion; the truth value is " true" i f
both of the conjoined condit ions are true;
"false" if one or both of the conjoined conditions
is false.

OR Log ica l inc lus ive OR; the t ru th va lue i s " t rue"
if one or both of the included conditions is true;
"false" if both included conditions are false.

NOT Log ica l nega t i on i s t he reve rsa l o f t he t ru th
value; the truth value is "true" if the condition
is false, and "false" if the condition is true.

Logical operators must be preceded and followed by a space.

Negated Simple Conditions: The general format of a negated simple
condition is:

NOT simple-condition

Thus, the simple-condition is negated through the use of the logical
operator NOT.
The truth value of a negated simple condition is the opposite of the
truth value for a simple condition. The negated condition is true if
the simple condition is false, and false if the simple condition is
t r ue .

Inclusion in parentheses of a negated simple condition does not affect
the truth value.

First Edition

ELEMENTS OF PRIME COBCL 74

Combined and Negated Combined Conditions: Combined conditions are
simple conditions connected by one of the logical operators AND or OR.
A combined condition has the format:

[NOT] condition-1 f NOTlcondition-2

where condition is:

• A simple condition

• A negated simple condition

• A combined condition

• A negated combined condition, that is, the logical operator NOT
followed by a combined condition enclosed in parentheses

• Combinations of the above

Table 4-4 below sets forth the permissible combinations of conditions,
logical operators, and parentheses.

Table 4-4

Permissible Combinations of Conditions,
Logical Operations, and Parentheses

Element

Place in
Expression

First Last

When not first,
the element can be
immediately preceded
only by:

When not last,
the element can be
immediately followed
only by:

Simple-condit ion Yes Yes OR, NOT, AND, (OR, AND,)

OR and AND No No Simple-condition,) Simple-condit ion,
NOT, (

NOT Yes No OR, AND, (Simple-condition, (

(Yes No OR, NOT, AND, (Simple-condit ion,
NOT, (

) No Yes Simple-condition,) OR, AND,)

First Edition

DOC5039-184

Multiple Conditions: Multiple conditions refer to complex conditions
grouped in parentheses.

Parentheses are permitted to an arbitrary depth. Often, however,
clarity can be enhanced by rewriting the condition without parentheses.
For example, in the statement:

IF a = b AND (c = d OR e = f)

explicit grouping may be achieved by coding:
IF a = b AND c = d OR a = b AND e = f

Abbreviated Combined Conditions

Abbreviated combined conditions are conditions with implied subjects or
implied operators. That is, the subject of the relation condition, or
both the subject and the relational operator, may be omitted if they
are the same as those in the preceding clause.

The format for an abbreviated combined condition is:

[NOT] relation-condition < < \ [NOT] [relation-operator]operand
OR

Either form of abbreviation may be used: the omission of subject, or
the omission of subject and relational-operator. The effect of such
abbreviations is that of inserting the previously stated subject in
place of the omitted subject, or the previously stated relational
operator in place of the omitted operator. All insertions terminate
once a complete simple condition is encountered within a complex
condition.

In all instances, the results must comply with the rules outlined in
Table 4-4 above.

If the word NOT is used in an abbreviated condition, it is evaluated as
follows:

• NOT participates as part of the relational operator if the word
immediately following NOT is GREATER, >, LESS, <, EQUAL, or =.

• Otherwise NOT is interpreted as a logical operator with the
result that the implied insertion of subject or relational
operator results in a negated relation condition.

First Edition

ELEMENTS OF PRIME OOBCL 74

Belcw are examples of abbreviated combined conditions:

Abbreviated Combined
and Negated Combined
Relation Conditions

a = b OR c OR d

a > b AND NOT < c OR d

NOT a = b OR c

a NOT EQUAL b OR c

u i va len t

a = b O R a = c O R a = d

((a > b) AND (a NOT< c)) OR (a NOT <d)

(NOT (a = b)) OR (a = c)

(a NOT EQUAL b) OR (a NOT EQUAL c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND c
AND NOT d)

NOT ((((a NOT > b) AND (a NOT > c))
AND (NOT (a NOT > d))))

Condition Evaluation Rules

The following order of logical evaluation is used to determine the
truth value of a condition.

1. Conditions within parentheses are evaluated first. Within
nested parentheses, evaluation proceeds from the least
inc lus i ve (i nnermos t) cond i t i on to the mos t i nc lus i ve
(outermost) condition.

2. Truth values for simple conditions are evaluated in the
following order:

Relation (following the expansion of any abbreviated
relation condition)

Class

Condi ti on-name

Switch-status

Sign

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established with this
h ierarchy:

AND logical operators, followed by

OR logical operators

First Edit ion

DOC5039-184

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by
parentheses, the order of evaluation of consecutive operations
of the same hierarchical level is from left to right.

The following examples illustrate the condition evaluation rules:

1. The condition below contains both AND and OR connectors.

IF X = Y AND FLAG = "Z" OR SWITCH = 0, GO TO PROCESSING.

Execution will be as follows, depending on various data values:

DATA
Y

Value
Flag Switch Executes

10
11

'2
'2

YES
NO
YESn ' 5

EHH 'I)' NO
3
6

> ' 0 Y E S
) ' 1 N O

A < B OR C = D OR E NOT > F: The evaluation is equivalent to
(A < B) or (C = D) or NOT (E < F) and is true if any of
the three individual parenthesized simple conditions is true.

The following time-card record description includes
condition-names. It is followed by an evaluation.

01 TIME-CARD
05 EMP-STATUS PIC X.

88 W VALUE 'W'.
88 H VALUE 'H'.
88 E VALUE 'E'.

05 HOURS PIC 99.

three

IF W AND HOURS NOT = 0 ...

The evaluation is equivalent to:

IF (EMP-STATUS = 'W') AND NOT (HCURS = 0)...

and is true only if both the simple conditions are true.

First Edition

ELEMENTS OF PRIME OOBOL 74

4. A=1ANDB = 2ANDG>-3 0RPN0T EQUAL TO "SPAIN"
is evaluated as:

[(A = 1) AND (B = 2) AND (G > -3)] OR NOT (P = "SPAIN")

If P = "SPAIN", the complex condition can be true only if all
three of the following are true:

A = 1
B = 2
G > -3

However, if P is not equal to "SPAIN", the complex condition is
true regardless of the values of A, B, and G.

First Edition

DOC5039-184

Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name, (no special characters in name)

[AUTHOR, [comment-entry] —]

[INSTALLATION, [comment-entry] -]

[DATE-WRITTEN, [comment-entry] • ••]

[DATE-COMPILED, [comment-entry] —]

[SECURITY, [comment-entry] • •]

[REMARKS, [comment-entry

itax Rules

1. The IDENTIFICATION division must begin with the reserved words
IDENTIFICATION DIVISION or ID DIVISION followed by a period and
a space.

L^iSjIr- (S$^#l@jii'3 L© ijjgy fes ffi©IS| 5$£fe§f=$ @£f '^^^1®^©'^®^:

The PROGRAM-ID paragraph is required- and must immediately
follow the division header. The program-name is the name of
the entry-point or object module, and is the name by which this
program is referenced in a CALL statement. If it is omitted,
MAIN is used by the compiler as the program-name.

The program-name follows the general rules for word formation
in Chapter 4. It may be any alphanumeric string or data-name.

Prime restriction:
program-name a
the entry-po
one runfl

on ly the firs t e i<
ine "

All remaining paragraphs are optional. A paragraph-header (a
reserved word) identifies the type of information contained in
each paragraph.

A comment-entry can be any combination of Prime characters.
The continuation of a comment-entry by a hyphen in column 7 is
not permitted; however, the comment-entry can appear on one or
more lines. Any comment lines after the header line must be
limited to Area B.

First Edition

THE IDENTIFICATION DIVISION

6. The REMARKS paragraph is a Prime extension.

Prime extension: optional paragraphs may appear in any

8. DATE-COMPILED causes the date and time of compilation t
printed in the listing file on the same line.

9. PROGRAM-ID and DATE-OOMPILED may be used in the PROCEDURE
division. In all references to PROGRAM-ID in the PROCEDURE
division, the program name is substituted. In all references
to DATE-COMPILED in the PROCEDURE division, the compilation

tdate and time are substituted. Both substituted items aretreated as nonnumeric literals.

First Edition

DOC5039-184

EXAMPLE

This example forms one program with the examples following Chapters 6,
7, and 8. It shows the listing output for the ID division.

IDENTIFICATION DIVISION.
PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.

DISBURSE.
ANNE LADD.
PRIME.
SEPTEMBER 20, 1978.
820517 AT: 09:22

* *
REMARKS. THIS PROGRAM PRODUCES A MONTHLY CASH DISBURSE*

OURNAL: A PRINTED DETAIL LIST AND TOTALS BY
TTH GRAND-TOTAL (CROSS-TOTAL) BALANCED AGAINf

USE DETAIL-LINES WITH
OOL. 1-3 CHECK NO.,
COL. 4-9 MMDDYY,
OOL. 13-32 VENDOR,
COL. 33-35 DEPT. OR ACCT. NO.,
OOL. 36-42 AMOUNT.

TO WRITE TAPE REOORD, ENTER YES FOR TAPE REQUEST.
*

THE PROGRAM CHECKS FOR INPUT ERRORS OF INVALID ACCOUNT
NUMBER, INVALID DATE, INVALID NUMERIC FIELDS. IT DOES NOT
CHECK FOR SEQUENCE ERRORS IN DATE OR CHECK NUMBER, OR FOR
DUPLICATE ENTRIES. THE PROGRAM ASSUMES AN UNSORTED DATA FILE.

* *

First Edition

The
ENVIRONMENT

DIVISION

ENVIRONMENT DIVISION

Function

The ENVIRONMENT division defines_ those aspects of a program that are
dependent upon hardware considerations.

Format

ENVIRONMENT DIVISION,

CONFIGURATION SECTION,

[SOURCE-COMPUTER, [computer-name.]]

OBJECT-COMPUTER, [computer-name]

[object-computer-entry].

SPECIAL-NAMES,

[special-names-entry]-

First Edition

DOC5039-184

INPUT-OUTPUT SECTION.

FILE-CONTROL. "1

{file-control-entry} •••

l-O-CONTROL.

[l-O-control-entry]

tax Rules

1. The ENVIRONMENT division must begin with the header ENVIRONMENT
DIVISION, followed by a period and a space.

2. The mandatory sequence of required and optional paragraphs is
shown in the above format.

extension: the clause
ax. in any order.

.QL paragraph ma

Prime extension: the SOURCE-COMPUTER and OBJECT-CO!
entries and computer-name are optional.

Prime extension: the CONFIGURATION section is optional.

General Rules

1. Each section within the ENVIRONMENT division begins with its
section-name, followed by the word SECTION, and each paragraph
within each section begins with its paragraph-header.

2. This section may be used to document harcVare-dependent
features of a program.

3. The computer-name serves only as documentation. It is used to
identify the computer upon which the OOBOL program is to be
compiled.

First Edition

THE ENVIRCNMENT DIVISION

OBJECT-COMPUTER

Format

OBJECT-COMPUTER, [computer-name]

WORDS
, MEMORY SIZE integer \ CHARACTERS

MODULES

General Rules

e computer-nai...
identify the computer on which the OOBOL prog

cecuted.

2. The MEMORY SIZE clause serves as documentation only.

3. The SBGMENT-LIMIT clause serves as documentation only. The
segment-number must be an integer ranging in value from 1
through 49.

First Edition

DOC5039-184

SPECIAL-NAMES

This paragraph is required only if one or more of its statements is
used.

Format

SPECIAL-NAMES.

[CONSOLE IS mnemonic-name]

I" switch-name [IS mnemonic-name]

r ON STATUS]S condition-name-1
[OFF STATUS |S condition-name-2]

] OFF STATUS JS condition-name-2
[ON STATUS IS condition-name-1]

f f S T A N D A R D - 1 1 _
, alphabet-name-1 IS \ NATIVE i

EBCDIC

[, CURRENCY SIGN IS literal]

[, DECIMAL-POINT IS COMMA 1.

General Rules

1. The mnemonic-name is a programmer-defined word that will be
associated with CONSOLE throughout the program. The following
example uses TTY as the mnemonic-name. The coding would cause
the field YEAR OF HIRE-DATE to be displayed on the console.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SPECIAL-NAMES. CONSOLE IS TTY.

PROCEDURE DIVISION.

DISPLAY YEAR OF HIRE-DATE UPON TTY.

First Edition

THE ENVIRONMENT DIVISION

EEESBauaa e reserved words in Pri

CBLSWO
CBLSW1
CBLSW2
CBLSW3
CBLSW4
CBLSW5
CBLSW6
CBLSW7

_n a OOBCL 74 program, switches may be tested but not
Switches may be set only in response to requests issued l
runtime. (See Chapter 3.) Their purpose is to allow for
changes in the real world each time a program is run. As an
example, a switch can determine whether or not to add month-end
processing. Switch condition-names or switch-status-conditions
are programmer-defined names. At least one condition-name must
be associated with each switch used in a program, so that
either the ON or the OFF status name is required. (See Chapter
4.) The status of a switch is determined by testing an
associated condition-name, as in the following example.

Switch-names may be qualified by mnemonic-names (status-names),
as SWITCH-ON OF SWITCH-ONE in this example.

SPECIAL-NAMES.
CBLSWO IS TAPE-SWITCH,

OI STATUS IS TAPE-SWrrCH-ON,
OFF STATUS IS TAPE-SWITCH-OFF,

CBLSW1 IS SWITCH-ONE,
CN STATUS IS SWTTCH-ON,
OFF STATUS IS SWITCH-OFF,

CBLSW2 IS SWITCH-TWO,
ON STATUS IS SWITCH-CfN,
OFF STATUS IS SWTTCH-OFF,

TEST SECTION.
ONLY-PARAGRAPH.

-SWITCH-OFF DISPLAY 'TAPE CANNOT BE PROCESSED1
m-HM OF SWITCH-ONE DISPLAY 'NO PRINT-OUT1.

The alphabet-name clause is syntax-checked only.

The literal represents the currency sign to be used in the
PICTURE clause. It is a single-character, nonnumeric literal
that will be used to replace the dollar sign as the currency
sign. The designated character may not be a single or double
quote mark, or any of the characters defined for PICTURE
representations.

First Edition

THE ENVIRCNMENT DIVISION

INPUT-OUTPUT SECTION

The INPUT-OUTPUT SECTION is used when there are external data files.
It allows specification of peripheral devices and information needed to
transmit and handle data between the devices and the program. The
section has two paragraphs: FILE-CONTROL and I-O-OONTROL.

FILE-CONTROL

Each file requires one file-control-entry,
dependent upon file organization.

The format chosen is

Format 1

SELECT [OPTIONAL] file-name

ASSIGN TO device-name

; RESERVE integer-1
AREA

AREAS

[; ORGANIZATION IS SEQUENTIAL]

ElflMi j^Ey is f t l i Jqa i

[; FILE STATUS IS data-name-1].

SELECT file-name

ASSIGN TO PFMS

; RESERVE integer-1
AREA

AREAS

; ORGANIZATION IS RELATIVE

; ACCESS MODE IS
SEQUENTIAL [, RELATIVE KEY IS data-name-1]

RANDOM

DYNAMIC
, RELATIVE KEY IS data-name-1

[; FILE STATUS IS data-name-2].

First Edition

DOC5039-184

Format 3

SELECT file-name

ASSIGN TO PFMS

; RESERVE integer-1
AREA

AREAS

; ORGANIZATION IS INDEXED

f SEQUENTIAL
; ACCESS MODE IS { RANDOM

DYNAMIC

; RECORD KEY IS data-name-1

[; FILE STATUS IS data-name-3].

General Rules

The SELECT clause must be specified first in the file-control
entry. The following clauses may appear in any order.
The file-name is a programmer-defined name described in the
DATA division. Each file specified here must have a file
description entry in the DATA division. The ASSIGN clause
associates the file-name with a storage medium or input/output
hardware. The device-names are Prime OOBOL 74 reserved words.
Allowable device-names appear in Table 6-1.

Device-name

TERMINAL

READER
PRINTER
PUNCH
MT7 and MT9
PFMS
OFFLINE-PRINT

Table 6-1
Device Specifications

Hardware Device

CRT terminal
TTY terminal
Card reader (for future designation)
System printer (goes to disk, can be spool.
Card punch (for future designation)
9-Track magnetic tape drive
Disk storage (Prime File Management System)
Serial line printer

First Edition

THE ENVIRCNMENT DIVISION

Examples:

SELECT SCREEN-FILE ASSIGN TO TERMINAL.
SELECT DISK-FILE ASSIGN TO PFMS.
SELECT TAPE-FILE1 ASSIGN TO MT9.

3. The OPTIONAL clause may be specified only for input files. It
is syntax-checked only.

4. The ASSIGN clause specifies the association of the file
referred to by file-name with a storage medium.

5. The RESERVE clause is for documentation only. Whether or not
it is used, one buffer area will be assigned by the compiler.

6. The ORGANIZATION clause specifies the logical structure of a
file. When the clause is omitted, the default is SEQUENTIAL.

7. The sequence in which records are accessed is described through
the use of the ACCESS MODE clause. When this clause is
omitted, the default is SEQUENTIAL.

8. The RECORD KEY clause is discussed in Chapters 12 and 13,
INDEXED SEQUENTIAL FILES and RELATIVE FILES.

9. The ALTERNATE REOORD KEY clause is discussed in Chapter 12,
INDEXED SEQUENTIAL FILES.

10. The FILE STATUS clause permits the user to specify a
two-character field (data-name-3), descr ibed in the
WORKING-STORAGE section or the LINKAGE section, as the file
status field. Data-name-3 may be qualified.

s exte
signed n

ta-name-3 may be either alphanumeric or
Lsplay field.

When the FILE STATUS clause is specified in the FILE-OONTROL
paragraph, OOBOL file control moves a value into data-name-3
after the execution of every statement that refers to that
file. Thus, the FILE STATUS data item is updated during the
execution of the OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statements. The value in data-name-3 indicates to the
OOBQL program the status of execution of the statement.

Valid combinations of file status values for each type of file
organization are shown in Table A-5 of Appendix A.

First Edition

DOC5039-184

I-0-OONTRQL

Format
l-O-CONTROL.

; RERUN [ON file-name-1]

[END OR
REEL

EVERY I integer-1 RECORDS J OF file-name-2
integer-2 CLOCK-UNITS

, condition-name

f RECORD
; SAME SORT

SORT-MERGE
AREA FOR file-name-3 {, file-name-4}

itax Rule

The I-O-CONTROL paragraph is optional.

General Rules

1. SAME AREA is treated as SAME RECORD AREA. The SAME AREA or
SAME REOORD AREA clause allows the programmer to share the same
memory areas for files that are not sort or merge files. This
feature saves memory space and eliminates MOVEs from one record
to another, thus saving execution time. No file may be listed
in more than one SAME AREA or SAME RECORD AREA clause.

An example is given in the sample program in Chapter 12.

2. The SAME AREA or SAME REOORD AREA clause specifies that two or
more files are to use the same memory area for processing of
the current logical record. All of the files may be open at
the same time. A logical record in the SAME RECORD AREA is
considered both as a logical record of each opened output file
whose file-name appears in this SAME REOORD AREA clause, and as
a record of the most recently read input file whose file-name
appears in this SAME REOORD AREA clause. This is equivalent to
an implicit redefinition of the area, that is, records are
aligned on the leftmost character position.

First Edition

THE ENVIRCNMENT DIVISION

If one or more file-names of a SAME AREA clause appear in a
SAME REOORD AREA clause, all of the file-names in the first
clause must appear in the second clause. However, additional
file-names not appearing in that SAME AREA clause may also
appear in that SAME REOORD AREA clause.
The files referenced in the SAME AREA or SAME RECORD AREA
clause need not all have the same organization or access.

The RERUN clause is checked for syntax only.

First Edition

DOC5039-184

EXAMPLE

This sample forms one program with the samples at the end of Chapters
5, 7, and 8.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-OOMPUTER. PRIME.
OBJECT-OOMPUTER. PRIME,
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TAPE-FILE, ASSIGN TO MT9.
SELECT PRINT-FILE, ASSIGN TO PRINTER.
SELECT DISK-FILE, ASSIGN TO PFMS.

* *

First Edition

The
DATA DIVISION

DATA DIVISION

Function

The DATA division of the COBCL source program defines the nature and
characteristics of the data to be processed by the program. Data to be
processed falls into three categories:

• Data in files, which enters or leaves the internal memory of the
computer from or to a specified storage area or areas

• Data developed internally and placed into intermediate or
working storage

• Data passed to the program from a calling program

The DATA division consists of three optional sections. If used, they
must appear in the following order:

1. FILE section. Files and records in files are described.

2. V^ORKING-STORAGE section. Memory space is defined for the
storage of items that are not part of external data files but
are intermediate processing results.

3. LINKAGE section. Data available to both a called program and a
calling program is described in the called program.

First Edition

DOC5039-184

Format

DATA DIVISION.

FILE SECTION.

file-description-entry.

[record-description-entry] ••«
I

sort-merge-file-description-entry.
I I. {record-description-entry} —

T WORKING-STORAGE SECTION.
i [

level-77-data-description-entry

'. data-description-entry

T LINKAGE SECTION.

level-77-data-description-entry
' '. data-description-entry

tax Rules

1. The DATA division must begin with the header DATA DIVISION,
followed by a period and a space.

2. When included, optional sections of the DATA division must be
in the order shown above.

Line extensions: file-description-entries an
e-description-entries may appear in

fe ^wKSSfSt
;L gvjgl JU^s]]--^//7 (5\Si^c;i£g^§\

General Rules

1. Each section within the DATA division begins with its
section-name, followed by a period and a space.

2. In WORKING-STORAGE, a data-description-entry uses the same
RaESBaSasa

First Edition

THE DATA DIVISION

FILE SECTION

Function

The FILE section of the DATA division defines the structure of data
files. Each file is defined by a file-description-entry (FD) or a
sort-merge-file-description-entry (SD), and by one or more associated
record-description-entr ies.

Format

FILE SECTION.

file-description-entry, [record-description-entry] •••

sort-merge-file-description-entry. {record-description-entry}

itax Rules

1. The FILE section is optional. If used, it must begin with the
header FILE SECTION, followed by a period and a space.

2. The FILE section contains FD and SD entries. Each one should
be fo l lowed immedia te ly by one or more assoc ia ted
record-description-entries. There is no limit to the number of
FD and SD entries in the FILE section. The number of files
that can be opened at once is limited only by PRIMOS. This
limitation is given in Appendix J.

General Rule

Each FD or SD entry must be associated with an 1-0 device by
statement in the EWIRONMENT division.

SELECT

The formats and the clauses required in an FD entry for a
nonsort file are described in this chapter. For a complete
discussion of an SD entry for a sort-merge file, see Chapter
11, THE SORT-MERGE MODULE.

First Edit ion

DOC5039-184

FILE-DESCRIPTION-ENTRY

Function
The file description provides information concerning the physical
structure, identification, and record names of a nonsort file.

Format

RECORDS

CHARACTERS
; BLOCK CONTAINS [integer-1 TO] integer-2

[; CODE-SET IS alphabet-name]

f RECORD IS I
; DATA J I data-name-1 [, data-name-2]

I RECORDS ARE

IS literai-1]

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

f f FILE-ID I f data-name-3
: VALUE OF \ \ OWNER-ID \ IS \

I I VOL-ID I literal-2

[record-description-entry]

it ax Rules

1. The level indicator FD identifies the beginning of a file
description and must precede the file-name.

2. The file-name follows the general rules in WORD FORMATION in
Chapter 4.

First Edition

THE DATA DIVISION

SED/UNOOMI
J files and. is discussed below. For -OLD, the default is

MPRESSED; for normal I-O, the default is UNCDMPRESSE

The file-description-entry is a sequence of clauses that must
be terminated by a period. There is no restriction on the
number of file-description-entries; the number of files that
may be opened at one time is limited by PRIMOS. This
limitation is listed in Appendix J.

If the DATA REOORD clause is used, one or more
record-description-entries must follow the file-description-
entry. Record-description-entries are presented with a
detailed format on page 7-16.

All clauses that follow file-name are optional.

First Edition

DOC5039-184

SED/UNOOMPRESSED mMM JltSSSilS
c t ion

iNGOMPRESSED option enables a disk READ or WRITE based on r<
ength, while the COMPRESSED option enables a READ or WRITE
ompression control characters.

format

FD file-name
COMPRESSED

UNCOMPRESSED

mrmim .'Ml
If no option is specified, the default is UNOOMPRESSED. For
OOBOL programs written for Rev. 18 and earlier software
revisions, use the -OLD switch in the compiling command line so
that the default will be COMPRESSED, or add COMPRESSED to the
FD line.

The UNOOMPRESSED option must be used when reading sequential
1-0 files containing nondisplay numeric data, such as packed or
binary data.

Note

Compression is the elimination of multiple blank
characters. File compression is effected by replacing
any string of three or more blank characters with a
control character plus a count. When a record is
written with compression control, the first space
character in such a string is replaced by the ASCII
control character DC1, and the second space is replaced
by a binary count (3 through 255) of spaces in the
string. The 3rd through 255th spaces are then deleted.
When the same record is read with compression control,
each combination of DC1 plus number is replaced by that
number of spaces before the record is made available to
the program.

The line-feed character (LF), rather than a word count,
it© ili'fcjitoj icy?) (3fgjf ityrfS >jl<?X§ ©£]§! @J' '§§Xs3$ 'JC^?v°)iX?.' B.1."'1 S!

First Edition

THE DATA DIVISION

BLOCK CONTAINS

Function

The BLOCK CONTAINS clause specifies the size of a physical record,

Format

BLOCK CONTAINS [integer-1 TO] integer-2
RECORDS

CHARACTERS

tax Rules

1. The BLOCK CONTAINS clause is optional.

2. The clause can be used only in connection with tape files.
PRIMOS disk files do not require explicit blocking for
efficient access.

Chapter 14 discusses the BLOCK CONTAINS clause in more detail.

First Edition

THE DATA DIVISION

DATA RECORDS

Function

The DATA RECORDS clause serves only as documentation for the names of
data records with their associated file.

Format

r RECORD IS]
DATA \ \ data-name-1 [, data-name-2]

I RECORDS ARE J

tax Rule

The data-names 1 and 2 are the names of the data records for the FD
entry. They must be specified by 01-level items following the file
description and must follow the general rules for word formation in
Chapter 4.

General Rules

1. The presence of more than one data-name indicates that the file
contains more than one type of data record. These records may
have different sizes and formats. The order in which they are
listed is not significant.

2. Conceptually, all data records within a file share the same
area, regardless of the number or types of data records within
the file.

First Edition

DOC5039-184

LABEL RECORDS

Function

The LABEL RECORDS clause specifies whether labels are present for the
fi l e .

Format

;LABEL
RECORD IS

RECORDS ARE OMITTED

STANDARD

General Rules

assume

OMITTED specifies that no explicit labels exist for the file or
device to which the file is assigned.

STANDARD specifies that a label exists for the file and that
the label conforms to system specifications.

Each Prime device requires a specific LABEL option, as shown in
Table 7-1 below.

See the Magnetic Tape User's Guide and Chapter 14 of this
manual on writing standard labels for magnetic tape.

Table 7-1
LABEL Clause Requirement

Device Standard Omitted

TERMINAL
READER
PRINTER
PUNCH
MT7 or MT9 (TAPE)
PFMS (DISK)

First Edition

THE DATA DIVISION

IS — PRIME EXTENSIO

ction

OWNER IS clause specifies the pathname of the user file directo
)) in which the file is contained.

The OWNER IS clause may be used only with disk files, and only in
conjunction with a VALUE OF FILE-ID clause.

1. The literal-1 is a nonnumeric value. With -OLD, it ...
exceed six characters. For normal I-O, VALUE OF FILE-ID I
data-name should be used instead of OWNER IS to give a long
pathname.

2. The clause may be overridden by file assignments at runtime if
the -OLD compile option was used. See Appendix K.

3. If the clause is used, it must follow the above rules. If it
is omitted, the current UFD is used as default.

4. The OWNER IS clause must not be used if the VALUE OF FILE-
clause is followed by a data-name instead of a literal.

5. If both FILE-ID IS literal-2 and OWNER IS literal-1 are use
the pathname sought is literal-l>literal-2.

Note

This feature is included only for compatibility with older

First Edition

DOC5039-184

REOORD CONTAINS

Function

The REOORD OONTAINS clause specifies the size of data records.

Format

RECORD CONTAINS [integer-3 JO] integer-4 CHARACTERS

General Rules

1. This clause is always optional, since the size of each data
record is defined fully by the set of data-description-entries
constituting the record (level 01) declaration.

2. The integer-4 may not be used by itself unless all the data
records in the file have the same size. In this case,
integer-4 represents the exact number of characters in the data
record. If integer-3 and integer-4 are both used, they refer
to the minimum number of characters in the smallest size data
record, and the maximum number of characters in the largest
size data record, respectively.

3. The maximum size of a single data record is listed in Appendix
J.

First Edition

THE DATA DIVISION

VALUE OF FILE-ID, VOL-ID, OWNER-ID

Function

The VALUE OF clause associates the internal file-name with a PRIMOS
file, thus allowing for the linkage of internal and external
file-names.

f f FILE-ID] r data-name-3
VALUE OF \ \ OWNER-ID \\S\

VOL-ID ! l i tera l -2

tax Rules

1. Disk file-names in data-name-3 and literal-2 must have the
following format:

[[[MFD-name>] UFD-name>] sub-UFD-name>...] file-name
where the file-name is the PRIMOS file name.

2. Tape file-names in data-name-3 and literal-2 must have the
following format:

drivename, label-type, owner-id, volume-id

drivename $MT(x), where x is a drive number from 0
through 3 (0 through 7 if logical drives were
assigned).

label-type N: no label information.
S: standard labels.

owner-id A 14-character field. This is called the
tape file-id by LABEL. This is not the same
as the CWNER field of the LABEL command.

volume-id A six-character field that is written in the
label of the tape being created, or is
checked if the tape is being read. This is
also called the volume serial number (VSN).

Chapter 14 discusses tape files more thoroughly.

First Edition

DOC5039-184

General Rules

Note

The section on OWNER IS earlier in this chapter includes some
restrictions on VALUE OF FILE-ID when used in conjunction with
OWNER IS.

1. The literal is a nonnumeric literal. For compatibility with
other COBQLs, the FILE-ID clause may be used in conjunction
with the OWNER IS clause presented earlier.

2. The data-name must be in the WORKING-STORAGE section. It may
be qualified, but it must not be subscripted, indexed, or
described with USAGE IS INDEX. The value of the data-name must
not exceed 120 characters for FILE-ID.

3. If there is no VALUE OF clause, the compiler will use the
file-name following FD.

4. If there is a VALUE OF clause, the compiler will use the
literal or the value in the data-name as the name of the PRIMOS
file or pathname. If the data-name is used, the pathname
should be contained in the data-name. The OOBOL program must
assign a value to the data-name.

5. The data-name-3 may be assigned a value with ACCEPT statements.
For an example, see the sample program at the end of Chapter
13.

6. VOL-ID and OWNER-ID are reserved for future implementation.

7. For rules with -OLD, see Appendix K.

8. If the value of the data-name is changed, the file must be
closed and then reopened in order for the new data-name to be
in effect.

Examples

A PFMS file named FILEX can be associated with a logical OOBOL file
named TEST-FILE in any of the following ways.

1. Value is literal:

FD TEST-FILE
LABEL RECORDS STANDARD
VALUE OF FILE-ID 'FILEX'.

First Edition

THE DATA DIVISION

2. Value is data-name:

FD TEST-FILE
LABEL RECORDS STANDARD
VALUE OF FILE-ID IS TFILE-NAME.

WORKING-STORAGE SECTION.
7 7 T F I L E - N A M E P I C X (2 4) .

An actual file-name can be associated with the logical file-name
TEST-FILE by executing COBOL statements. For example:

IF NEW-FILE = 1
MOVE "FILEX" TO TFILE-NAME,

ELSE IF NEW-FILE = 2
MOVE "OTHER" TO TFILE-NAME,

ELSE
MOVE "ARTHUR>TESTFILE PASSWORD" TO TFILE-NAME.

Another way to do it could be:

MOVE SPACES TO TFILE-NAME
DISPLAY "ENTER TEST-FILE NAME."
ACCEPT TFILE-NAME.

First Edition

DOC5039-184

REOORD-DESCRIPTION-ENTRY

Format 1

level-number
data-name-1

FILLER

[; BLANK WHEN ZERO]

JUSTIFIED
RIGHT

;OCCURS
integer-2 TIMES

ASCENDING

DESCENDING
KEY IS data-name-3 [, data-name-4]

f INDEXED BY index-name-1 [, index-name-2] -]

PICTURE
IS character-string

[: REDEFINES data-name-5]

f LEADING 1
; [SIGN IS] \ \ [SEPARATE CHARACTER]

TRAILING

SYNCHRONIZED 1 V LEFT

SYNC RIGHT

COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1

• niQArFRl COMPUTATIONAL-2; [USAGE IS] COMp.2
COMPUTATIONAL-3
COMP-3
DISPLAY

I I N D E X

[: VALUE IS literal]

First Edition

Format 2

THE DATA DIVISION

r rTHROUGH i
66 data-name-1 ; RENAMES data-name-2 \ \ data-name-3

I THRU

Format 3

f THROUGH)
88 condition-name; VALUE IS literal-1 \ \ literal-2

I THRU J

T f THROUGH 1
, l i te ra l -3 I \ l i te ra l -4

THRU

itax Rules

1. The level-number in Format 1 may contain a value of 01 through
49, or 77.

2. In Format 1, clauses can be written in any order with two
exceptions: the data-name-1 or FILLER clause must immediately
follow the level-number; and the REDEFINES clause, when used,
must immediately follow the data-name-1 clause.

3. In Format 1, the PICTURE clause must be specified for every
elementary item except when USAGE is described as binary
(COMPUTATIONAL) or floating-point (COMPUTATION
OOMPUTATIONAL-2) or INDEX. A group item cannot contain a
PICTURE clause.

4 . T h e O C C U R S c l a u s e c a n n o t b e s p e c i fi e d i n a
da ta -descr ip t ion -en t ry tha t has a 66 , 77 , o r an 88
level-number.

5. Format 2 permits alternative, possibly overlapping groups of
elementary items.

6. The words THRU and THROUGH are equivalent.

General Rules

A record-description-entry can appear in the FILE, VTORKING-srORAGE, or
LINKAGE sect ion of the DATA divis ion. Al l records in each
file-description-entry must be described by record-description-entries.

First Edition

DOC5039-184

LEVEL-NUMBER

Function

The level-number shows the position of a data-item within the hierarchy
of data in a logical record. It also specifies entries for
condition-names, the RENAMES clause, and data items in the
WORKING-STORAGE and LINKAGE sections.

Format

level-number

itax Rules

1. A level-number is required as the first element in each data-
description-entry. (See REQORD-DESCRIPTION-ENTRY.)

2. Data-description-entries subordinate to an FD or SD entry must
have level-numbers 66, 88 or 01 through 49.

3. Data-description-entries in the WORKING-STORAGE and LINKAGE
sections must have level-numbers 66, 77, 88 or 01 through 49.

General Rules

1. Level-numbers are used to subdivide a record so that each item
in the record may be referred to. A record can be divided, and
each subdivision further divided. An item that is not further
subdivided is called an elementary item. A record can itself
be an elementary item.

2. A group consists of one or more consecutive group or elementary
items; groups can, in turn, be combined into other groups. In
standard COBOL, a group consists of a specified group item and
all following items until the next item with a level-number
less than or equal to that of the group item is reached.

oup item numbered higher th.
^umbered in the same or successiv

the ANSI Stan
are equivalen

First Edition

THE DATA DIVISION

Standard Use andard

01 REOORD-1.
0 5 C - l .

10 AA PIC 99.
10 BB PIC 9V9.

05 C-2.
10 CC PIC 9(5).
10 DD PIC X(8).

REOORD-1.
C - l .

Tl 0 AA PIC 9
8 BB PIC 9

5} C-2.
%0 CC PIC 9
Jl [IBljBS PIC X

The level-numbers range from 01, the most inclusive level, to
49, the least inclusive level. Any level-number except 49 can
denote a group.

The level-number 01 identifies the first entry in each record
description. A reference to a level-01 data-name in the
PROCEDURE division is a reference to the entire record.

Multiple level-01 entries subordinate to one FD represent
implicit redefinitions of the same area.

The following special level-numbers have been assigned to
certain entries where there is no real concept of hierarchy.

* i T h e l e v e l - n u m b e r 7 7 i s a s s i g n e d t o i d e n t i f y
noncontiguous WORKING-STORAGE or LINKAGE data items.
They may be used only as described in Format 1 of the
record-descr ip t ion-ent ry.

Level-77 data items are elementary items that cannot be
subdivided.

Level-number 88 is assigned to entries that define
condition-names associated with a conditional variable.
Condit ion-names and the condit ional var iable are
discussed in Chapter 4. Level 88 can be used only with
Format 3 of the record-description-entry.

Level-88 entries can contain individual values, series
of individual values, or a range of values.

Example:

01 TEST-AREA PIC X.
88 TEST-VALUE-1 VALUE '1'.
88 TEST-VALUE-2 VALUE '1', '2'.
88 TEST-VALUE-3 VALUE '1' THRU '8'.
88 TEST-VALUE-4 VALUE 'l1 THRU '4', '6', '7'.

The VALUE clause is required in a level-88 entry, and
must be the only clause in the entry. THRU and THROUGH
are equivalent.

First Edit ion

DOC5039-184

A level-88 entry must be preceded either by another
level-88 entry, or by an elementary item, called the
conditional variable.

The condition-name may be qualified by the name of the
conditional variable. A condition-name is used in the
PROCEDURE division in place of a relational condition,
as discussed in Chapter 4. A condition-name, when
written in the PROCEDURE division, must be subscripted
if its conditional variable is subscripted. The type of
literal in a condition-name VALUE clause must
consistent with the data type of the conditional
variable.

In the following example, PAYROLL-PERIOD is the
conditional variable. The picture associated with it
limits the value of the 88 condition-name to one digit.

PAYROLL-PERIOD
88 WEEKLY
88 SEMI-MONTHLY
88 MONTHLY

PICTURE IS 9.
VALUE IS 1
VALUE IS 2
VALUE IS 3,

Using the above description, you may write the
procedural condition-name test:

IF MONTHLY PERFORM DO-MONTHLY.

An equivalent statement is:

IF PAYROLL-PERIOD = 3 PERFORM DO-MONTHLY.

For an edited elementary item, values in a VALUE clause
must be expressed in the form of nonnumeric literals.

The level-number 66 is assigned to identify RENAMES
entries, which are discussed later in this chapter. It
can be used on ly w i th Format 2 o f the
record-description-entry.

First Edition

THE DATA DIVISION

Example

The weekly time card record in Figure 7-1 illustrates the level
concept. It is divided into four major items: name, employee-number,
date, and hours, with more specific information appearing for name and
date.

NAME
LAST-NAME
FIRST-IN TT
MIDDLE-INIT

TIME-CARD EMPLOYEE-NUM

DATE-STARTED MONTH
DAYY
YEAR

HOURS-WORKED

Weekly Time-card Record
Figure 7-1

The time-card record might be described by DATA division entries having
the following level-numbers, data-names, and picture definitions.

01 TIME-CARD.
05 NAME.

10 LAST-NAME
10 FIRST-INIT
10 MIDDLE-TNIT

05 EMPLOYEE-NUM
05 DATE-STARTED.

10 MONTH
10 DAYY
10 YEAR

05 HOURS-WORKED

PICTURE X(18).
PICTURE X.
PICTURE X.
PICTURE 99999.

PIC 99.
PIC 99.
PIC 99.
PICTURE 99V9.

First Edition

DOC5039-184

DATA-NAME OR FILLER

Function

A data-name specifies the name of the data being described. FILLER
specifies an elementary item that cannot be referred to explicitly.

Format

data-name

FILLER

General Rules

Lme extensi
LI as an elementary i

A FILLER item cannot be referred to explicitly. However,
FILLER can be used as a conditional variable because such use
does not require explicit reference to the FILLER item, but
rather to its value.

A VALUE clause can be used with a FILLER item.

Example

01 INPUT-RECORD.
05 FILLER

88 FULL-TIME VAL.
88 PART-TIME VAEJ

05 NAME
05 FILLER
05 HOURS

PIC X(40)
PIC X(10)
PIC 99.

In this example, the FILLER items cannot be changed except by moving
data into their group item INPUT-RECORD. The second FILLER item cannot
be referred to individually, but the first FILLER item can be tested by
code such as the following:

IF FULL-TIME PERFORM 070-FULL-TIME.

First Edition

THE DATA DIVISION

BLANK WHEN ZERO

Function
The BLANK WHEN ZERO clause permits the blanking of an item when its
value is zero.

Format

BLANK WHEN ZERO

tax Rule

The BLANK WHEN ZERO clause can be used only for an elementary numeric
or numeric edited item.

General Rules

1. The BLANK WHEN ZERO clause specifies that the data item will be
set to blanks when the value is all zeros. Leading zeros are
not suppressed by this clause. Figure 7-2 illustrates some
uses for this clause.

2. If the clause is specified for a numeric item, the category of
the item is interpreted as numeric edited.

3. An asterisk used as the zero-suppression symbol may not be used
in a picture-string with this clause.

Value

0012.34
0123.45
01.2345
0000.04
0000.00
0000.00
0000.00
0000.04
0000.00
0000.04
0000.00
0000.00

Description of 0UT-O0ST Resul t

9999.99 BLANK WHEN ZERO 0012.34
$9999.99 BLANK WHEN ZERO $0123.45
$9999.99 BLANK WHEN ZERO $0001.23
$$$$$.99 BLANK WHEN ZERO $.04
$$$$$.99 BLANK WHEN ZERO bbbbbbbb |
$$$$$.99 $.00 |

ZZZZVZZ BLANK WHEN ZERO bbbbbb j
ZZZZVZZ BLANK WHEN ZERO
zzzz.zz BLANK WHEN ZERO bbbbbbb
zzzz.zz BLANK WHEN ZERO .04
ZZZZ.99 BLANK WHEN ZERO bbbbbbb
ZZZZ.99 .00

Examples: BLANK WHEN ZERO
(b = blank)
Figure 7-2

First Edition

DOC5039-184

JUSTIFIED

Function

The JUSTIFIED clause specifies right alignment of data within a field,

Format

JUSTIFIED

JUST
RIGHT

itax Rules

1. This clause can be specified only at the elementary level.

2. JUST is a valid abbreviation of JUSTIFIED.

3. The JUSTIFIED clause cannot be used for data items described as
numeric, or for those for which editing is specified.

General Rules

1. When the JUSTIFIED clause is included, values are stored in
right-to-left fashion. In a MOVE operation, if the sending
field is shorter than the JUSTIFIED receiving field, space
filling occurs in the leftmost positions of the receiving
field. If the sending field is longer, the leftmost characters
of the sending field are truncated. If the sending field is
the same size as the JUSTIFIED receiving field, the result is a
straight MOVE, including spaces.

2. When the JUSTIFIED clause is omitted,
rules in Chapter 4 apply.

the standard alignment

Examples

Of the following two fields, one is justified and one is not. Since
the following MOVE statement, however, involves two fields of the same
size, the contents of field Y are not right-justified, (b = blank.)

01 Y
01 Z

PIC X(4) JUST.
PIC X(4).

MOVE 'AB' TO Z. MOVE Z TO Y.
EXHIBIT Z ' ' Y. terminal displays: Z = ABbb Y ■ ABbb

First Edition

THE DATA DIVISION

OCCURS

Functions

The OCCURS clause permits the definition of related sets of repeated
data, such as tables, arrays, and lists. It supplies required
information for the application of subscripts or indexes.

Format

OCCURS
integer-1 TO integer-2 TIMES DEPENDING ON data-name-3

integer-2 TIMES

ASCENDING

DESCENDING
KEY IS data-name-3 [, data-name-4] - ♦••

[INDEXED by index-name-1 [, index-name-2] •••]

See Chapter 10, TABLE HANDLING, for detailed discussion of
the OCCURS clause.

First Edition

DOC5039-184

PICTURE

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

Format

PICTURE
IS character-string

itax Rules

A PICTURE clause can be specified only at the elementary item
l e v e l .

A p icture character-st r ing or p icture-str ing consists of
certain allowable combinations of characters in the OOBOL
character set used as symbols. The allowable combinations
determine the category of the elementary item.

The maximum number of characters allowed in a picture-string is
32. In the shorthand notation X(n), the repeat integer n may
not exceed 32767, and may not be less than 1.

The PICTURE clause must be specified for every elementary item
except binary and floating-point items. The clause is optional
for items with the OOMP clause. (The default is PIC S9999.)

a l l

PIC is an abbreviation for PICTURE.

A picture-string must include at least one of the characters Z
A * X 9 or at least two consecutive appearances of the
characters + - $.

General Rules

Categories: Five categories of data can be defined with a PICTURE
clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and
numeric edited. Their picture-strings have the following restrictions.

• Alphabetic: The picture-string can contain only the characters
A and B. Contents of the data field so described may only be
any combination of the letters of the English alphabet and the
OOBOL space character. See Example 3 of Figure 7-3.

First Edition

THE DATA DIVISION

Nonedited
Example Value Pic ture Stored as

1 37 P999
.5 P999
.05 P999 .05

2 37 999PP
3700 999PP

Edited

3700

Example Value Pic ture Will Print as

3 JDOE ABAAAA J D O E |
4 JDOE XBXXXX J DOE
5 113113 XXXOXXX 1130113
6 459243333 XXX/XX/XXXX 459/24/3333
7 10000 99,999 10,000
8 9999 999.9 999.0
9 999 999.9 999.0

10 +5500 +9999 +5500
11 -5500 +9999 -5500
12 +5500 9999CR 5500
13 +5500 9999DB 5500
14 +5500 9999+ 5500+
15 +5500 ZZZ.99 500.00
16 123 $$$.$$ $23.00
17 123 $$$.99 $23.00
18 003 $$$.$$ $3.00
19 000 $$$.$$
20 00345 $$$.$$ $45.00
21 0000 ZZ,ZZZ
22 00345 zz,zzz 345
23 0000 $* * * * * $ * * * * *
24 0000 $zzzzz
25 00 $***.99 $***.oo
26 00 ZZ,ZZZ.99 .00
27 0.03 ZZ,ZZZ.ZZ .03
28 0.00 ZZ,ZZZ.ZZ

Examples of PICTURE Clauses and Conversions
Figure 7-3

First Edition

DOC5039-184

Numeric: The picture-string can only contain the symbols 9, P,
S, and V. The number of digit positions that may be represented
by this picture-string is 1 to 18; the contents of this field
may only be a combination of the digits 0 through 9, plus an
optional sign.

Alphanumeric: The picture-string is a combination of the data
description characters X, A, or 9, and the item is treated as if
the string contained all X's. Alphanumeric picture-strings may
not employ all 9's or all A's. Item contents may be any
character from the computer's ASCII character set.

Alphanumeric edi ted: The picture-str ing is restr ic ted to
certain combinations of the following symbols: A, X, 9, B, 0,
/. Allowable combinations are discussed in Symbols below.
Contents of the field may be any character from the computer's
ASCII character set.

Numeric edited: The picture-string is a certain combination of
the ed i t ing symbols Z .CRDB,$ + *B0- /9VP. I t must
c o n t a i n a t l e a s t o n e o f t h e e d i t i n g s y m b o l s
Z .CRDB,+*B0-/ and field contents must be numerals.
The maximum number of digit positions is 18.

Size: elementary number character
positions occupied by the item in standard data format) is determined
by the number of symbols that represent character positions, as listed
below.

An integer enclosed in parentheses, following the symbols A X 9 P Z * B
/ 0 + - or the currency symbol, indicates the number of consecutive
occurrences of that symbol. This is the repeat integer.

x)ls: Symbols used in a picture-string to define an elementary item
have the following functions:

A Each A represents a character position containing only a letter
of the alphabet, or a space.

B Each B represents a character position into which a space
character will be inserted. Its use is explained in Editing
Rule 3 below.

P Each P indicates an assumed decimal scaling position. It
specifies the location of an assumed decimal point that does
not appear in the data item. The P is not counted in the size
of the data item, but is counted in determining the maximum
number of digit positions in numeric-edited items or numeric
items.

First Edition

THE DATA DIVISION

In conversions, each digit position described by a P is
considered to contain the value zero. The assumed decimal
point is considered to be to the left of the P that is leftmost
in a string, or to the right of P's that are rightmost in a
string. Thus the effect of each P is to divide or multiply a
data item by one power of ten.

The scaling position character P may appear only to the left or
right of the other characters in the string, except that the
sign character S and the assumed decimal point V may appear to
the left of a leftmost string of P's. Since the character P
implies an assumed decimal point, the symbol V is redundant as
either the leftmost or rightmost character within such a
PICTURE description.

The character P and the insertion character period (.) may not
both occur in the same picture-string.

See the two nonedited examples in Figure 7-3.

The picture-string symbol S indicates the presence of a sign in
a data item, but implies nothing about the actual format or
location of the sign in storage.

The symbol S is not counted in determining the size of the
elementary item, unless the entry is subject to a SIGN clause
with the SEPARATE qualifier. (See SIGN.)

When used, the S symbol must be written as the leftmost
character in a picture-string.

The character V indicates the position of an assumed decimal
point. Since a numeric item cannot contain an actual decimal
point, an assumed decimal point is used to provide information
concerning the alignment of items involved in computations.
The V does not represent a character position and therefore is
not counted in the size of the item. Only one V is permitted
in any single picture.

Each X represents a character position that may contain any
allowable character from the computer's character set.

Each character Z is a replacement character that represents a
leading numeric position that will be replaced by a space when
its contents are zero. Each Z is counted in the size of the
item. Its use is explained in Editing Rule 7 below.

Each 9 in a picture-string represents a character position that
contains a numeral and is counted in the size of the item.

First Edit ion

DOC5039-184

Each zero in the picture-string represents a character position
into which the numeral 0 will be inserted. The 0 is counted in
the size of the item. Its use is explained in Editing Rule 3
below.

Each slash mark (/) in the picture-string represents a
character position into which the slash character will be
inserted. The slash is counted in the size of the item. Its
use is explained in Editing Rule 3 below.

The comma character (,) specifies insertion of a comma between
digits. Each such character is counted in the size of the data
i tem, but does not represent a digi t posi t ion. When
DECIMAL-POINT IS COMMA is specified, the explanations for
period and comma are reversed to apply to comma and period,
respectively. Its use is explained in Editing Rule 3 below.

A period character (.) in a picture-string is an editing
symbol representing the decimal point for alignment purposes.
The character also serves to indicate the position for decimal
point insertion. Its use is explained in Editing Rule 4 below.

Numeric character positions to the right of an actual decimal
point in a PICTURE must consist of characters of one type. The
period character (.) is counted in the size of the item. When
DECIMAL-POINT IS COMMA is specified, the explanations for
period and comma are understood to apply to comma and period,
respect ive ly.

The period character must not be the last character in the
p i c t u re - s t r i ng .

These symbols are used as editing sign control symbols
and represent the charac ter pos i t ion in to wh ich the
editing sign control symbol is placed. The symbols are mutually
exclusive in any one picture-string, and each character used in
the symbol is counted in determining the size of the data item.
That is, CR and DB require two character positions each; the +
and - require one character position each. Their use is
explained in Editing Rules 5 and 6 below.

Each asterisk in a picture-string is a replacement character.
Leading zeros in the affected item are suppressed and replaced
by asterisks. Each asterisk is counted in the size of the
item. Its use is explained in Editing Rule 7 below.

The dollar sign or other currency symbol represents a
character position into which the currency symbol is to be
placed. Their use is explained in Editing Rule 6 below.
The currency symbol is the character specified in the CURRENCY
SIGN clause or else the dollar sign. It is counted in the size
of the item.

First Edition

THE DATA DIVISION

Editing Rules

The rules below define the ways of editing a data field, that is, of
adding, changing, or suppressing certain characters in it. Examples
are given in Figure 7-3.

1. The maximum length of an edited field is 255 characters. The
maximum length of an edited picture-string is 32 characters.

2. The PICTURE clause provides two methods for editing: character
insertion and character suppression and replacement.

There are four types of insertion editing:

Simple insertion

Special insertion

Fixed insertion

Floating insertion

There are two types of suppression and replacement editing:

Zero suppression and replacement with spaces

Zero suppression and replacement with asterisks

The type of editing that may be performed upon an item is
dependent upon the category to which the item belongs, as
defined in Chapter 4. Table 7-2 specifies which type of
editing may be performed upon a given category.

Table 7-2
Categories of Data and Editing

Category of Data Type of Editing Allowed

Alphabet ic Simple insertion (B only)

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion (0 B and /)

Numeric edited All, subject to rules for
fixed insertion editing

First Edition

DOC5039-184

Simple insertion editing uses the four symbols BO , / as
insertion characters. The insertion characters are counted in
the size of the item and represent the position in the item
into which the character will be inserted. See examples 4-7
for edited fields in Figure 7-3.

Special insertion editing refers to decimal point insertion.
The period is used as the insertion character. It also
represents the decimal point for alignment purposes. The
period is counted in the size of the item. The use of the
assumed decimal point, represented by the symbol V, and an
actual decimal point, represented by the insertion character,
in the same picture-string is not allowed. The result of
special insertion editing is that the insertion character is
placed in an item in the same position where it appears in the
picture-string. See examples 8-10 for edited fields in Figure
7-3 .

Fixed insertion editing employs the currency sign and editing
sign control symbols as insertion characters. The four editing
sign control symbols are + - CR DB.

Only one currency symbol, and only one of the editing sign
control symbols, can be used in a given picture-string. When
the symbols CR or DB are used, they represent two character
positions in determining the size of the item. They must
represent the rightmost character positions to be counted in
the size of the item. The symbol + or -, when used, must be
either the leftmost or rightmost character position to be
counted in the size of the item. The currency symbol must be
the leftmost character position to be counted in the size of an
item, except that it can be preceded by either a + or - symbol.
Fixed insertion editing results in the insertion character
occupying the same character position in the edited item as it
occupied in the picture-string. Editing sign control symbols
produce the results shown in Table 7-3 depending upon the value
of the data item.

Table 7-3
Results of Sign Control Symbols in Editing

Editing Symbol in
Picture-str ing Result

D a t a I t e m D a t a I t e m
Positive or Zero Negative

+ + —i

CR
DB

space
2 s p a c e s C R
2 s p a c e s D B

See examples 11-14 for edited fields in Figure 7-3.

First Edition

THE DATA DIVISION

6. Floating insertion editing uses floating insertion characters.
These are the currency symbol and the editing sign control
symbols + or -. As floating insertion characters, these are
mutually exclusive in a given picture-string. These characters
cause leading zeros in their positions to be replaced with
blanks, except for the leftmost zero, which is replaced with
the insertion character.

A floating string is defined as a leading, continuous series of
either $ + or -, or a string composed of one such character
interrupted by one or more insertion commas and/or decimal
point. Examples are:

$$,$$$,$$$

+ (8).++
$$,$$$.$$$

Floating insertion editing is indicated in a picture-string by
including in it a string of at least two of the floating
insertion characters. This floating string may contain any of
the fixed insertion symbols. The leftmost character of the
floating insertion string represents the leftmost limit of the
floating symbol in the data item. The rightmost character of
the floating string represents the rightmost limit of the
floating symbols in the data item.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the
data item. Nonzero numeric data may replace all the characters
at or to the right of this limit.

In a picture-string, there are only two ways of representing
floating insertion editing. One way is to represent any or all
of the leading numeric character positions on the left of the
decimal point by the insertion character. The other way is to
represent all of the numeric character positions in the
picture-string by the insertion character. See examples 15-16
for edited fields in Figure 7-3.

If the insertion characters are only to the left of the decimal
point in the picture-string, the result is that a single
floating insertion character will be placed in the character
position immediately preceding the first nonzero digit in the
data item. If all data item digits to the left of the decimal
are zero, the floating insertion character will be placed in
the character position immediately preceding the decimal point.
The character positions preceding the insertion character are
replaced with spaces.

First Edition

DOC5039-184

If all numeric character positions in the picture-string are
represented by the insertion character, the result depends on
the value of the data. If the value is zero, the entire data
item will contain spaces. See examples 17-19 for edited fields
in Figure 7-3.

If the value is not zero, the result is the same as when the
insertion character is only to the left of the decimal point.
See example 18 for edited fields in Figure 7-3.

To avoid truncation, the minimum size of the picture-string for
the receiving data item must be the number of characters in the
sending data item, plus the number of nonfloating insertion
characters being edited into the receiving data item, plus one
for the floating insertion character. That is, to define n
digit posit ions, a floating string must contain n + 1
occurrences of $ or + or -.

When a comma appears to the right of a floating string, the
comma is not retained if there are no digits retained before
i t .

Examples:

Picture-string Numeric Value Developed Item

$$$999
— , , 9 9 9 - 4 5 6 - 4 5 6
$$$$$$

A floating string need not constitute the entire PICTURE of a
numeric edited item. However, the characters to the right of a
decimal point and up to the end of a PICTURE, excluding the
fixed insertion characters +, -, CR, DB (if present), are
subject to the following restrictions:

• Only one type of digit position character may appear.
That is, the three characters Z * 9 are mutually
exc lus i ve , and the floa t i ng -s t r i ng d ig i t pos i t i on
characters $ + - are mutually exclusive.

i If any of the numeric character positions to the right
of a decimal point is represented by + or - or $ or Z,
then all the numeric character positions in the PICTURE
must be represented by the same character.

• Nothing can precede a floating string except + or -.

Suppression and replacement editing includes two types: zero
suppression and replacement with spaces, and zero suppression
and replacement with asterisks.

First Edition

THE DATA DIVISION

Floating insertion editing and editing by zero suppression and
replacement are mutually exclusive in a PICTURE clause.

The suppression of leading zeros in numeric character positions
is indicated by the use of the alphabetic character Z, or the
cha rac te r * (as te r i sk) as supp ress ion symbo ls i n a
picture-string. These symbols are mutually exclusive in a
p ic ture-s t r ing. Each suppress ion symbol is counted in
determining the size of the item. If Z is used, the
replacement character will be the space. If the asterisk is
used, the replacement character will be the asterisk. See
examples 20-24 for edited fields in Figure 7-3.

Zero suppression and replacement are indicated in a
picture-string by one or more of the allowable symbols (Z or
*), representing leading numeric character positions. These,
in turn, are to be replaced when the associated character
position in the data contains a zero. Any of the characters
BO,/ embedded in the string of suppression symbols, or to
the immediate right of this string, is part of the string.

There are two ways of representing zero suppression in a
picture-string. One way is to represent any or all leading
numeric character positions to the left of the decimal point by
suppression symbols. The other way is to represent all numeric
character posit ions in the picture-str ing by suppression
symbols.

If the suppression symbols appear only to the left of the
decimal point, any leading zero in the data that corresponds to
a symbol in the string is replaced by the replacement
character. Suppression terminates either at the first non-zero
digit in the data represented by the suppression symbol string,
or at the decimal point, whichever is first.

If all numeric character positions in the picture-string are
represented by suppression symbols, and the value of the data
is not zero, the result is the same as if the suppression
characters were only to the left of the decimal point. If the
value is zero, the entire data item will be spaces if the
symbol is Z, or all asterisks (except for the actual decimal
point) if the symbol is *. See examples 25-27 for edited
fields in Figure 7-3.

The following symbols can appear only once in a given picture:
S V . CR DB.

First Edit ion

DOC5039-184

REDEFINES

Function

The REDEFINES clause allows the same computer storage area to be
described by different data-description-entries. It is useful in table
handling.

Format

f data-name-1 ~|
[[; REDEFINES data-name-2]

FILLER

Note

The level-number, data-name-1, and the semicolon are not part
of the REDEFINES clause, but are included to show the context.

itax Rules

1. The REDEFINES clause is optional; when specified, it must
immediately follow data-name-1. The entry for data-name-1 must
follow the entry for data-name-2.

2. Level-numbers of data-name-1 and data-name-2 must be identical,
but must not be 66 or 88.

3. This clause must not be used in level-number 01 entries in the
FILE section.

5. The data-description-entry for data-name-2 may not contain an
OCCURS clause, nor may data-name-1 be subordinate to an entry
containing an OCCURS clause.

6. The data-name-2 may be qualified but not subscripted.

7. When the level-number of data-name-1 is other than 01, it must
specify the same number of character positions as data-name-2.

General Rules

1. Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered. In

First Edition

THE DATA DIVISION

the following example, redefinition of the data-name-2 area by
data-name-1 ends when data-name-3 is encountered.

05 data-name-2 PICTURE A(3).
05 data-name-1 REDEFINES data-name-2.

10 ITEM-A PICTURE A.
10 ITEM-B PICTURE AA.

05 data-name-3 PICTURE X.

Figure 7-4 represents the projection of these two data-names on
one storage area through the REDEFINES clause.

A Storage Area Redefined
Figure 7-4

The entries giving the new description of the area must not
contain VALUE clauses except in condition-name entries.

Redefinition to a depth greater than one level is permitted.
(See Syntax Rule 4, above.) Thus, the nested REDEFINES
outlined below is valid:

0 1 F I E L D - A P I C X (1 0) .
01 FIELD-B REDEFINES FIELD-A.

05 F IELD-C PIC X(5) .
05 FIELD-D REDEFINES FIELD-C.

10 FIELD-E1 PIC X(3).
10 FIELD-E2 PIC X(2).

05 F IELD-F P IC X(5) .

When a value is assigned to one data-name for a redefined
storage area, all names for that area will have the same value.

First Edition

DOC5039-184

Function

The RENAMES clause permits alternative, possibly overlapping, groups of
elementary items.

Format

66 data-name-1;RENAMES data-name-2
THROUGH

data-name-3

The level-number 66, data-name-1, and the semicolon are not part of
the RENAMES clause, but are included to show the context.

itax Rules

1. Any number of RENAMES entries may be written for a logical
record. They must all immediately follow the last entry of
that record.

2. The data-name-1 cannot be used as a qualifier but can be
qualified by the 01 or FD entries. Neither data-name-2 nor
data-name-3 may have an OCCURS clause nor be subordinate to an
entry that has an OCCURS clause in its data-description-entry.

3. The data-names 2 and 3 must be the names of elementary items or
groups of elementary items in the same record and cannot have
the same data-name.

4. A level-66 entry cannot rename another level-66 entry or a 77,
88 or 01 level entry, nor can it rename an entry that contains
an 88-level entry.

5. The beginning of the area described by data-name-3 must not be
to the left of the beginning of the area described by
data-name-2. The end of the area described by data-name-3 must
be to the right of the end of the area described by
data-name-2. Therefore data-name-3 cannot be subordinate to
data-name-2.

6. The data-names 2 and 3 may be qualified.

7. The words THRU and THROUGH are equivalent.

First Edition

THE DATA DIVISION

General Rules

When data-name-3 is specified, data-name-1 will be a group item
that includes all elementary items starting with data-name-2
(if that is an elementary item) or the first elementary item in
data-name-2 (if data-name-2 is a group item), and concluding
with data-name-3 (if that is an elementary item) or the last
elementary item in data-name-3 (if data-name-3 is a group
i tem) .

When data-name-3 is not specified, data-name-2 can be either a
group or an elementary item. When data-name-2 is a group item,
data-name-1 is treated as a group item, and when data-name-2 is
an elementary item, data-name-1 is treated as an elementary
item.

Example

In the following example, the 66-level name VENDOR-ENTRY establishes a
new group item from a part of the elements in the record ENTRY-IMAGE.
Note that, in this example, RENAMES redefines two level-10 items
followed by three level-5 items, while REDEFINES would have redefined
only one elementary or one group item.

FD ENTRY-FILE, LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS ' IN-DATA',
REOORD CONTAINS 36 CHARACTERS,
DATA REOORD IS ENTRY-IMAGE.

01 ENTRY-IMAGE.
05 ENTRY-MONTH.

1 0 D Y P I C 9 9 .
1 0 M O P I C 9 9 .
1 0 Y R P I C 9 9 .

05 ENTRY-VENDOR PIC X(20) .
0 5 E N T R Y- A C C T- N 0 P I C 9 9 9 .
0 5 E N T R Y- A M O U N T P I C 9 (5) V 9 9 .

66 VENDOR-ENTRY RENAMES MO THRU ENTRY-AMOUNT.

First Edition

DOC5039-184

SIGN

Function

The SIGN clause specifies the position and the mode of representation
of the operational sign when it is necessary to describe these
propert ies expl ic i t ly.

Format

[SIGN IS]
LEADING

TRAILING
[SEPARATE CHARACTER]

itax Rules

The SIGN clause may be specified only for a numeric data item
whose PICTURE contains the character S, or for a group item
containing at least one such elementary item. If an S is not
present in the data item picture-string, the item is considered
unsigned (capable of storing only absolute values), and the
SIGN clause is prohibited.

Numeric data items to which the SIGN clause applies must be
described explicitly or implicitly by USAGE IS DISPLAY.

Only one SIGN clause can apply to any given numeric data-
description-entry.

If the CODE-SET clause is specified in a file-description-
entry, any signed numeric item associated with that file must
be described with the SIGN IS SEPARATE clause.

General Rules

1. When S appears in a picture-string, but no SIGN clause is
included in an item's description, the default is SIGN IS
TRAILING.

2. If the optional SEPARATE CHARACTER phrase is not present, then:

• The operational sign is presumed associated with the
leading (or trailing) digit position of the elementary
numeric data item.

• The character S in the picture-string is not counted in
determining item size.

First Edition

THE DATA DIVISION

If the SEPARATE CHARACTER phrase is present, then:

• The operational sign is presumed to be the leading (or
trailing) character position of the elementary numeric
data item; this character position is not a digit
pos i t i on .

• The let ter S in a p icture-str ing is counted in
determining the size of the item (in terms of standard
data format characters).

• The operational signs for positive and negative are the
standard data format characters + and -, respectively.

Every numeric data-description-entry whose PICTURE contains the
character S is a signed numeric data-description-entry. If a
SIGN clause applies to such an entry and conversion is
necessary for purposes of computation or comparisons,
conversion takes place automatically.

Table 7-4 depicts sign representations for the various SIGN
clause options.

Table 7-4
Sign Representation

SIGN Clause Sign Representation

See the section DATA REPRESENTATION AND ALIGNMENT in Chapter 4
for a detailed description of SIGN formats and conventions.

First Edition

DOC5039-184

SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies the alignment of an elementary item
on its natural addressing boundaries in the computer memory.

Format

SYNCHRONIZED 1 V LEFT

SYNC RIGHT

itax Rules

1. SYNC is an abbreviation for SYNCHRONIZED.

2. In this compiler, the SYNCHRONIZED specification is treated as
commentary.

3. Alignment of group items and elementary items of certain data
types is done automatically by the compiler. Level-77 and
level-01 items are always aligned on halfword (16-bit)
boundaries. Group items with level-numbers greater than 01
(subgroups) are aligned on halfwords if they contain fields
that require such alignment (OOMP, OOMP-1, and COMP-2 fields).
The data map created with the -MAP compiler option flags items
that are aligned by the compiler. In addition, the -SLACKBYTES
compiler option causes an observational diagnostic to be issued
for each compiler-aligned item.

See DATA REPRESENTATION AND ALIGNMENT in Chapter 4.

First Edition

THE DATA DIVISION

USAGE

Function

The USAGE clause describes the form in which numeric data is
represented.

Format

COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1

COMP-2

COMP-3
INDEX
DISPLAY

itax Rules

1. OOMP, OOMP-1,
COMPUTATIONAL,

COMP-2, COMP-3 are abbreviations
mMW7TA^iONAL-l, OOMPUTATIONAL-2,

E7i

3. The PICTURE clause cannot be used if USAGE is specified as

General Rules

1. COMPUTATIONAL defines a binary item. OOMPUTATIONAL-1 defines
single-precision floating-point number. OOMPUTATIONAL-2
d e fi n e s a d o u b l e - p r e c i s i o n fl o a t i n g - p o i n t n u m b e r.
GOMPUTATIONAL-3 specifies a packed decimal item. INDEX defines
a binary item to be used for referencing tables. DISPLAY
defines an item represented in external decimal format.

These items and their allowable PICTURE clauses are discussed
in the section DATA REPRESENTATION AND ALIGNMENT in Chapter 4.
The alignment of COMP, OOMP-1, and COMP-2 items is also
discussed with the SYNCHRONIZED clause above.

First Edition

DOC5039-184

The USAGE clause can be written at any level. If the USAGE
clause is written at a group level, it applies to each
elementary item in the group. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group
item to which it belongs.

A COMPUTATIONAL, OOMPUTATIONAL-1, OOMPUTATIONAL-2
G0MPUTATI0NAL-3 item can represent a value to be used in
computations and must be numeric. When a group item is given
one of these usages, only the elementary items in that group
may be used in computations.

DISPLAY is the system default if the USAGE clause is not
specified. Numeric display items may be used in computations.

the compiler assumes
in teger) .

as COMPUTATIONAL
ded for the same

S9999 (16-bit signed binary

OOMP-1 and OOMP-2 are intended for use in calling certain
PRIMOS subrou t ines tha t requ i re floa t ing -po in t (rea l)
arguments. They are also for use in scientific calculations
that require a large range at the expense of absolute decimal
prec is ion .

OOMP and COMP-3 are for use in most decimal calculations. OOMP
allows the greatest efficiency both in storage space and in
speed o"
to sav

'&m ?Mr mKm^M, mm~& i># >!»? ®p2$$- '»&m

DISPLAY is the only usage allowed for alphabetic characters and
symbols. For numbers, it is allowed in calculations but is
less efficient than the other usages.

INDEX is allowed only for a value to be used as the index to a
table. Allowable operations on the index data type are listed
in the discussion of INDEX in Chapter 10.

If any of these data types are mixed together in calculations,
such a mixed calculation is allowed, but often at the expense
of either precision or efficiency. For detai ls, see the
section DATA REPRESENTATION AND ALIGNMENT in Chapter 4.

First Edition

THE DATA DIVISION

VALUE

Function

The VALUE clause defines the value of constants, the initial values of
WORKING-STORAGE items, and the values associated with a condition-name.

Format 1

VALUE is literal

Format 2

VALUE is literal-1

, literal-3 \

r f THROUGH
I literal-2

ral-4

[t h r u
THROUGH ̂

THRU [lite

itax Rules

The words THROUGH and THRU are equivalent.

The VALUE clause is not permitted in a data-description-entry
specifying an OCCURS or REDEFINES clause, or subordinate to
such an entry.

A signed numeric literal may be used in a VALUE clause only if
the associated picture-string is a signed numeric item.

Numeric literals in a VALUE clause must have a value within the
range of values indicated by the PICTURE clause, and must not
have a value that would have nonzero digits truncated.

Nonnumeric literals in a VALUE clause must not exceed the size
indicated by the PICTURE clause.

The type of literal allowed in a VALUE clause depends on the
type of data item, as specified in the PICTURE or USAGE
clauses. For edited items, values must be specified as
nonnumeric literals. A type conflict, producing a compile-time
error, will arise if a figurative constant or literal is not
compatible with the PICTURE. For example, PICTURE X VALUE 1234
will produce a type conflict error, since 1234 is a numeric
figurative constant, but PICTURE X specifies an alphanumeric
item.

First Edition

DOC5039-184

6. A VALUE clause may not occur in the FILE section of the DATA
division except in level-88 condition-name entries.

General Rules

1. The VALUE clause must not conflict with other clauses in the
data description of the item or in a data description within
the hierarchy of the item.

2. Initialization takes place independently of any BLANK WHEN ZERO
or JUSTIFIED clause that may be specified.

3. The VALUE clause may be specified at the group level in the
form of a correctly sized nonnumeric literal, or a figurative
constant.

4. A figurative constant may be specified in both Format 1 and
Format 2 instead of a literal.

5. Format 1 is required to define an initial value for a data item
or a constant.

6. Format 2 is used only for condition-name entries (level-88
items). The VALUE clause and the level-88 condition-name
itself are the only two items permitted in the entry. The
characteristics of a condition-name are implicitly those of its
conditional variable. Wherever the THRU phrase is used,
literal-1 must be less than literal-2, literal-3 less than
l i te ra l -4 , e tc .

Level-88 specifications can contain individual values, series
of individual values, a range of values, or a series of ranges
of values. (See also LEVEL-NUMBER.)

7. Rules governing the VALUE clause differ in the respective
sections of the DATA division:

• In the FILE section, the clause can be used only in
condition-name entries.

• In the WORKING-STORAGE and LINKAGE sections, the clause
must be used in condition-name entries. It can also be
used in the WORKING-STORAGE section to specify the
initial value of any other data item, with the result
that the item assumes the specified value at the start
of the object program.

• When an initial value is not specified, no assumption
should be made regarding the initial contents of an item
in WORKING-STORAGE.

First Edition

THE DATA DIVISION

If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal.
The group area is initialized without consideration for the
individual elementary or group items contained within this
group. No VALUE clause can be stated at the subordinate levels
within this group.

The VALUE clause must not be written for a group containing
items with descriptions including JUSTIFIED, SYNCHRONIZED, or
USAGE other than USAGE IS DISPLAY.

First Edition

DOC5039-184

WORKING-STORAGE SECTION

Function

The WORKING-STORAGE section of the DATA division describes
noncontiguous data (level-77 data with no hierarchic relationship) and
records that are not part of external files, but are developed and
processed internally. Data in this section may be assigned initial
values with the VALUE clause.

Format

WORKING-STORAGE SECTION.

level-77-description-entry

record-description-entry

itax Rules

1. The WORKING-STORAGE section is optional. If included, it must
begin with the words WORKING-STORAGE SECTION, followed by a
period and a space.

2. Noncont iguous i tem names and record names in the
WORKING-STORAGE section must be unique; they cannot be
qualified. Subordinate data-names need not be unique if they
can be made unique by qualification, or if they are never
referenced.

3. The level-number 77 is applied to noncontiguous elementary data
items. Each noncontiguous item must be defined in a separate
da ta -descr ip t ion-en t ry. The fo l low ing da ta c lauses a re
required in each noncontiguous data-description-entry:

• level-number 77

• data-name

• The PICTURE clause or the USAGE IS INDEX, OOMP,
OOMP-2, or OOMP-3 c

Other data description clauses are optional and can be used to
complete the description of the item if necessary.

First Edition

THE DATA DIVISION

Data items in the WORKING-STORAGE section with a definite
hierarchic relationship to one another must be grouped into
records according to the rules for formation of record
descriptions. Any clause used in a record description in the
FILE section can be used in a record description in the
WORKING-STORAGE section. (See REOORD-DESCRIPrION-ENTRY above.)

General Rules

1. WORKING-STORAGE items described in this chapter include the
following:

i Noncontiguous elementary items with the level-number 77.
These items have no hierarchical relationship to one
another and cannot be grouped into records or further
subdivided.

> Data items in records not associated with an
input-output device and not part of external data files,
but developed and processed internally. These items
employ level-numbers 01 through 49.

2. VALUE clauses, prohibited in the FILE section, are permitted
throughout WORKING-STORAGE to specify the initial value of an
item, except for an index data item.

First Edition

DOC5039-184

LINKAGE SECTION

Function

The LINKAGE section describes data previously defined in
program which is available to a called program.

Format

LINKAGE SECTION.

level-77-description-entry

record-description-entry

tax Rules

1. The LINKAGE section is optional. It is meaningful only in a
called program. If included, it must begin with the words
LINKAGE SECTION followed by a period and a space.

2. Each LINKAGE section record-name and noncontiguous item name
must be unique within the called program; they cannot be
qual ified.

3. The level-number 77 refers to noncontiguous elementary data
items. Each level-number 77 data item is defined in a separate
data-description-entry. The following data clauses are
required in each noncontiguous data-description-entry:

• level-number 77

• data-name

The PICTURE clause or the USAGE IS INDEX, OOMP,

Other data description clauses are optional and can be used to
complete the description of the item if necessary.

Data items in the LINKAGE section which have a definite
hierarchic relationship to one another must be grouped into
records according to the rules for record-description-entries.

Items in the LINKAGE section cannot have initial values unless
they have a level-number of 88.

First Edition

THE DATA DIVISION

General Rules

The LINKAGE section of the DATA division is meaningful only if
the program containing it is called by another program whose
CALL statement contains a USING phrase.

The LINKAGE section is used to describe data that is available
through the calling program, and is to be referred to in both
the calling program and the called program. No space is
allocated in the program for data items defined in the LINKAGE
section of that program. PROCEDURE division references to
these data items are resolved at runtime by equating the
reference in the called program to the location used in the
calling program.

Data items defined in the LINKAGE section of the called program
may be used within the PROCEDURE division of the called program
only if they are specified as operands of the USING phrase of
the PROCEDURE division header, or are subordinate to such
operands, and the object program is under the control of a CALL
statement which specifies a USING phrase.

A LINKAGE section example is presented in Chapter 9,
INTERPROGRAM COMMUNICATION.

First Edition

DOC5039-184

EXAMPLE

This DATA division listing forms one program with the examples at the
end of Chapters 5, 6, and 8.

DATA DIVISION.
*
FILE SECTION.

*
FD DISK-FILE COMPRESSED,

LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'DISBURSE',
REOORD CONTAINS 42,
DATA REOORD IS ENTRY-DETAIL.

01 ENTRY-DETAIL.
05 ENTRY-CHECK-NO PIC X(3) .
05 ENTRY-MONTH.

1 0 E N T R Y - M M P I C 9 9 .
1 0 E N T R Y - D D P I C 9 9 .
1 0 E N T R Y - Y Y P I C 9 9 .

0 5 F I L L E R P I C X X X .
05 ENTRY-VENDOR PIC X(20) .
05 ENTRY-ACCT-NO P IC 999 .
05 ENTRY-AMOUNT P IC 9 (5)V99 .

PIC 99.
PIC 99.
PIC 99.
PIC XXX.
PIC X(20).
PIC 999.
PIC 9(5)V99

PRINT-FILE,
LABEL RECORDS ARE OMITTED,
DATA RECORDS ARE PRINT-LINE, ERROR-LINE.
P R I N T - L I N E P I C X (7 0) .
ERROR-LINE.
0 5 M E S S A G E P I C X (2 0) .
0 5 E R R - O O D E P I C 9 .

TAPE-FILE,
LABEL REOORD IS STANDARD,
BLOCK CONTAINS 4 REO0RDS,
VALUE OF FILE-ID IS TAPENAME,
DATA REOORD IS TAPE-LINE.

TAPE-LINE PIC X(20)

WORKING-STORAGE SECTION.
77 BLANKS
77 CROSS-TOTAL
77 FINAL-TOTAL
77 GRAND-TOTAL
77 JOB-DATE
77 LIMIT-DATE
77 LTNEOOUNT
77 NO-MORE-REOORDS
77 PAGEOOUNT
77 REJECT-TOTAL
77 TAPE-CHOICE
77 TAPENAME

PIC X(2)
PIC S9(8)V99
PIC S9(8)V99
PIC S9(8)V99
PIC 9(6)
PIC S9(5).
PIC S99
PIC X
PIC S9
PIC S9(7)V99
PIC XXX
PIC X(20)

VALUE ZERO.
OOMP-3 VALUE ZERO.
OOMP-3 VALUE ZERO.
OOMP-3 VALUE ZERO.

VALUE ZERO.

OOMP-3 VALUE ZERO.
VALUE 'N'.

OOMP-3 VALUE 1.
OOMP-3 VALUE ZERO.

VALUE 'NO '

First Edition

THE DATA DIVISION

VALUE IS '$MT0, S, ANNE, Tl1.
7 7 T O TA L 1 P I C S 9 (7) V 9 9 O O M P - 3 VA L U E Z E R O .
7 7 TO TA L 2 P I C S 9 (7) V 9 9 C D M P - 3 VA L U E Z E R O .
7 7 TO TA L 3 P I C S 9 (7) V 9 9 O O M P - 3 VA L U E Z E R O .
7 7 T O TA L 4 P I C S 9 (7) V 9 9 O O M P - 3 VA L U E Z E R O .
7 7 TO TA L 5 P I C S 9 (7) V 9 9 C O M P - 3 VA L U E Z E R O .
7 7 TO TA L 6 P I C S 9 (7) V 9 9 O O M P - 3 VA L U E Z E R O .

V A R I A B L E P I C S 9 V A L U E 2 .
*JQB-INPO IS ACCEPTED FROM CONSOLE:
01 JOB-INFO.

0 3 J O B - C O D E P I C S 9 9 .
88 CORRECT-CODE VALUE 25.

* *
• P R I N T - L I N E S

* *
HEADING1.
03 CARRIAGE-OONTROL
03 FILLER
03 FILLER

VALUE 'MONTHLY CASH
03 FILLER
HEADING2.
03 CARRIAGE-COITRQL
03 FILLER
03 FILLER
03 VARIABLE-MONTH
03 FILLER
03 FILLER
03 HEADING-PAGE
HEADING3.
03 CARRIAGE-OOTTROL
03 FILLER
03 VARIABLE-HEADING
03 FILLER
PRINT-DETAIL.
05 FILLER
05 ENTRY-MONTH
05 FILLER
05 ENTRY-VENDOR
05 FILLER
05 ENTRY-CHECK-NO
05 FILLER
05 PRINT-ACCT-N0
05 FILLER
05 PRINT-AMOUNT
HOME-ACCT-LINE.
05 FILLER
05 HOME-NUMBER
05 HOME-TOTAL
BALANCE-LINE.
05 FILLER
05 FIELD-TOTAL
05 FILLER
05 FIELD-REJECT

PIC X.
PIC X(18) VALUE SPACES.
PIC X(34)

DISBURSEMENTS JOURNAL'.
PIC X(12) VALUE SPACES.

PIC X.
PIC X(25)
PIC X(7)
PIC X(15).
PIC X(15)
PIC X(4)
PIC ZZ9.

PIC X.
PIC X(24)
PIC X(24)
PIC X

PIC X(l)
PIC 9(6).
PIC X(6)
PIC X(20).
PIC X(7)
PIC X(3) .
PIC X(9)
PIC X(3) .
PIC X(6)
PIC ZZZZZZ.99

PIC X(13)
PIC X(21).
PIC Z(8).99.

PIC X(9)
PIC Z(8).99.
PIC X(8)
PIC Z(8).99.

VALUE SPACES.
VALUE 'FOR

VALUE SPACES.
VALUE 'PAGE'.

VALUE SPACES,
VALUE SPACES,
VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

VALUE SPACES,

VALUE SPACES,

VALUE SPACES,

First Edition

DOC5039-184

0 5 F I L L E R P I C X (9) V A L U E S P A C E S .
0 5 F I E L D - D I F F P I C Z (8) . 9 9 .
0 5 F I L L E R P I C X (l l) V A L U E S P A C E S .

* *
* TAPE OUTPUT
* *
01 TAPE-HEADER.

0 5 TA P E - M O N T H P I C X (1 5) VA L U E S PA C E S .
0 5 F I L L E R P I C X (5) V A L U E S P A C E S .

01 SAVE-TAPE.
05 SAVE-DATE-TAPE P IC 9 (6) .
05 SAVE-ACCT-TAPE PIC XXX.
05 SAVE-TOTAL-TAPE PICS9(9)V99 COMP-3 .
EJECT

* *

VALUE SPACES.
VALUE SPACES.

OOMP-3.

First Edition

The
PROCEDURE

DIVISION

PROCEDURE DIVISION

Function

The PROCEDURE division contains instructions specifying the steps to be
performed by the program. COBOL instructions are written as statements
or sentences that may be combined to form paragraphs headed by
paragraph-names. These, in turn, may be combined to form sections
headed by section-names.

Format 1

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] —]

DECLARATIVES.

I. USE-sentence.

[paragraph-name, [sentence] •••]

END DECLARATIVES.

[paragraph-name, [sentence] •••]

First Edition

DOC5039-184

Format 2

[paragraph-name, [sentence] •••]

itax Rules

1. The first entry in the PROCEDURE division must be the words
PROCEDURE DIVISION, followed by a period and a space unless the
USING clause is included.

2. The USING clause is specified only if both of the following
occur:

• The program being written is a CALLable subprogram that
is to function under the control of a CALL statement.

• The CALL statement in the calling program contains a
USING clause.

3. Each of the data-name operands in the USING clause must be
defined as a data item in the LINKAGE section of the program.

4. Within the program, LINKAGE section data items are processed
according to their data descriptions given in the program
i t s e l f .

Prime extension: level-numbers of data-names in the USING

n@S2S!v ®sg © ®s5joiif=^ mmmmmo
jMNagtgrwg

6. Declarative sections are optional. When included, they must be
grouped at the beginning of the PROCEDURE division, preceded by
the keyword DECLARATIVES and followed by the keywords END
DECLARATIVES. These entries must appear on separate lines.

7. A declarative section must have a section header. When
included, it must consist of a section-name, followed by the
word SECTION and a period. Each section-name must appear on a
line by itself; each section-name must be unique.

8. A paragraph is an entry consisting of zero or more sentences,
preceded by a paragraph-name.

9. Segment-numbers are included only for compatibility. They must
be integers from 0 to 99.

10. Paragraph-names and section-names follow the general rules for
word formation in Chapter 4. These names may be all numeric.

First Edition

THE PROCEDURE DIVISION

11. A sentence is a single statement or a series of statements
terminated by a period and followed by a space.

12. A statement consists of a COBOL verb followed by appropriate
operands (data-names or literals) and other clauses necessary
for the completion of the statement. Statements are classed as
imperative, conditional, or compiler-directing.

An imperative statement specifies uncondi t ional
action to be taken by the object program. An imperative
statement consists of a verb and its operands, excluding
the IF conditional statement, the READ statement, any
arithmetic statement with the SIZE ERROR clause, and any
1-0 statement with an INVALID KEY or AT END clause.

• A conditional statement stipulates a condition that is
tested to determine whether an alternate path of program
flow is to be taken. IF s ta tements , a r i thmet ic
statements with SIZE ERROR, and any 1-0 statement having
an INVALID KEY or AT END clause are conditional. See
Chapter 4 for rules governing conditional statements.

• Compiler-directing statements cause the compiler to
perform an action but have no effect on execution of the
object program. USE, EJECT, SKIP, and COPY are
directives to the compiler.

13. The maximum code size in the PROCEDURE division is listed in
Appendix J.

Arithmetic Statements in the PROCEDURE Division

1. Arithmetic statements may be imperative or conditional. The
five arithmetic verbs are: ADD, SUBTRACT, MULTIPLY, DIVIDE,
COMPUTE. Arithmetic statements in the PROCEDURE division are
governed by the following rules:

All data-names used in arithmetic statements must be
elementary numeric data items defined in the DATA
division of the program, except when they are the
operands of GIVING, in which case they may be numeric
edited. Index-names and index items are not permitted
in these arithmetic statements.

Decimal-point al ignment i
throughout the computations.

supp l ied au tomat ica l l y

First Edition

DOC5039-184

The maximum size of each operand is 18 decimal digits.

The composite of operands for an arithmetic statement is
a hypothetical data item resulting from superimposition
of its operands aligned on their decimal points. For
example, 12345678.9 and 1.23456789, superimposed, form a
composite having 16 digits. No composite of operands
may contain more than 18 decimal digits unless it is
used with COMPUTE or the GIVING option.

The composite of the operands 12345678.9, 1.23456789,
and 1234.56 may be pictured as in Figure 8-1.

Composite of Operands
Figure 8-1

The four clauses that may appear in arithmetic statements are:
the GIVING option, the ROUNDED option, the SIZE ERROR option,
and the CORRESPONDING clause. GIVING may not be used with
COMPUTE.

If the GIVING option is used, the value of the data-name
that follows the word GIVING is made equal to the
calculated result of the arithmetic operation. The
data-name that follows GIVING is not used in the
computation and may be a numeric edited item.

When the ROUNDED option is specified, if the most
significant digit of the excess is greater than or equal
to 5, the least significant digit of the resultant
data-name has its value increased by 1. If the ROUNDED
option is not used, truncation and, hence, loss of
precision may occur.

Rounding of a computed negative result is performed by
rounding the absolute value of the computed result and
then making the final result negative.

Figure 8-2 il lustrates the relationship between
calculated result and the value stored in an item that
is to receive the calculated result, with and without
rounding.

First Edition

THE PROCEDURE DIVISION

Item to Receive Calculated Result

-12.36
8.432

35.6
65.6

.0055

PICTURE

S99V9
9V9

99V9
S99V

SV999

Value After
Rounding

-12.4
8.4

35.6

Value After
Truncat ing

-12.3
8.4

35.6

Rounding Results
Figure 8-2

The SIZE ERROR option is written immediately after any
arithmetic or numeric MOVE statement, as an extension of
the statement. The format of the SIZE ERROR option is:

[ON SIZE ERROR imperative-statement (s) ...]

If, after decimal-point alignment, the absolute value of
a calculated result exceeds the largest value that the
receiving field is capable of holding, a size error
condition exists.

Division by 0 always causes a size error condition. The
size error condition applies only to the final results
of an arithmetic operation and does not apply to
intermediate results. If ROUNDED is specified, rounding
takes place before checking for size errors.

If the SIZE ERROR option is present, and a size error
condition arises, the value of the receiving data-name
is unaltered and the series of imperative statements
specified for the condition is executed.

If the SIZE ERROR option has not been specified for
arithmetic statements and a size error condition arises,
the final resul t is undefined. Truncat ion usual ly
resu l t s .

An arithmetic or numeric MOVE statement, if written with
a SIZE ERROR option, is a conditional statement since it
i s data-dependent . I t i s there fore proh ib i ted in
contexts where only imperative statements are allowed.

An example of a conditional arithmetic statement is:

ADD 1 TO REO0RD-O0UNT, CN SIZE ERROR MOVE ZERO TO
REO0RD-O0UNT, DISPLAY "LIMIT 99 EXCEEDED".

First Edition

DOC5039-184

If RECORD-COUNT has PICTURE 99, and has the value 99, it
cannot be incremented, so both the MOVE and DISPLAY
statements are executed. Otherwise, the MOVE and
DISPLAY statements are not executed.

The CORRESPONDING clause may be used with all arithmetic
statements, plus MOVE and IF, in Prime COBOL. It
requires two operands, group-1 and group-2, which must
each refer to group items. A pair of data items, one
from group-1 and one from group-2, correspond if the
following three conditions exist.

A data item in group-1 and a data item in group-2
are not designated by the keyword FILLER and have
the same data-name and the same qualifiers up to,
but not including, group-1 and group-2.

At least one of the data items is an elementary data
item in the case of a MOVE statement. Both of the
data items are elementary numeric data items in the
c a s e o f t h e a r i t h m e t i c s t a t e m e n t s . I n I F
statements, both items may be elementary or
nonelementary.

The description of group-1 and group-2 does not
contain level-number 66, 77, or 88 or the USAGE IS
INDEX clause.

A data item that is subordinate to group-1 or group-2
and contains a REDEFINES, RENAMES, OCCURS, or USAGE IS
INDEX clause is ignored, as well as any items
subordinate to it. However, group-1 and group-2 may
have REDEFINES or OCCURS clauses or be subordinate to
data items with REDEFINES or OCCURS clauses.

If ROUNDED is specified with the CORRESPONDING option,
rounding as described above is performed on each matched
receiving operand.

If SIZE ERROR is specified in conjunction with the
CORRESPONDING option, a size error test is made for each
pair of operands that are matched under the rules for
CORRESPONDING, irrespective of the results of any
previous SIZE ERROR calculations in the statement. The
imperative statement specified as the SIZE ERROR option
is executed if any matching pairs of operands have
caused a size error.

First Edition

THE PROCEDURE DIVISION

DECLARATIVE STATEMENTS

The sections under the DECLARATIVES header provide procedures that are
invoked when an 1-0 condition occurs that is not otherwise provided for
by the program.

A declarative section may handle errors for multiple statements
referring to one file, in place of several AT END or INVALID KEY
clauses. In addition, only a declarative section can cover the
multiuser situation where a record accessed by one program has already
been locked by another program.

Since such procedures are executed only at the time an error in reading
and writing occurs, they cannot appear in the regular sequence of
procedural statements. Instead, they must appear in the DECLARATIVES
section. Error-handling procedures for each file must be grouped
together and preceded by a separate USE sentence.

For additional information, see the USE statement in this chapter. An
example is given at the end of Chapter 8.

tax Rules

1. Each declarative section includes a section header, a USE
sentence, and, optionally, one or more paragraphs.

2. END DECLARATIVES must be followed by a period.

3. See the USE statement in this chapter for more information on
the DECLARATIVES section.

PROCEDURE STATEMENTS

OOBQL statements are described on the following pages in alphabetic
order. For a list of statements and other reserved words, see the
reserved words list, Table A-2 in Appendix A.

First Edition

DOC5039-184

ACCEPT

Function

The ACCEPT statement causes low-volume data to be moved to the
specified data-name.

Format 1

ACCEPT data-name [FROM mnemonic-name]

Format 2
f DATE

ACCEPT data-name FROM \ DAY
TIME

itax Rule

The mnemonic-name in Format 1 must be specified in the SPECIAL-NAMES
paragraph of the ENVIRCNMENT division, with the CONSOLE IS clause.

Only one transfer of data, and therefore only one data-name, is allowed
after ACCEPT.

General Rules

1. The ACCEPT statement causes transfer of data from the terminal
or system clock. The transferred data replaces the contents of
the field specified by data-name.

2. One line is read, and as many characters as necessary
(depending on the size of the named data field) are moved to
the indicated field. The maximum number of characters that can
be read is 256.

3. When input is to be accepted from the terminal, execution
consists of the following steps:

• Execution is suspended.

• When the user enters a carriage return, the program
stores the keyed-in data preceding the carriage return
in the field designated by data-name, and normal
execution proceeds.

First Edition

THE PROCEDURE DIVISION

• For unequal sizes of data-name and terminal input the
result is treated as an alphanumeric to alphanumeric
move with space-fill on the right or right truncation.

• A single line as long as 256 characters may be
t rans fe r red .

The Format-2 ACCEPT statement causes the requested information
to be transferred to the data item specified by data-name
according to the rules of the MOVE statement. DATE, DAY, and
TIME are reserved words and should not be described in the
COBOL program.

DATE has the following data elements: year, month, and day of
the month, in that sequence. Thus July 1, 1974 is expressed as
740701. DATE, when accessed by a OOBCL program, is treated as
though described in the OOBCL program as an unsigned elementary
numeric integer data item six digits long.

DAY has the following data elements: year and day of year, in
that sequence. July 1, 1974 would be expressed as 74183. DAY,
when accessed by a COBOL program, is treated as though
described in the COBOL program as an unsigned elementary
numeric integer data item five digits long.

TIME has the following data elements: hours, minutes, seconds,
and hundredths of a second. TIME is based on time elapsed
after midnight on a 24-hour basis; thus 2:41 p.m., or 1441
hours, is expressed as 14410000. TIME, when accessed by a
OOBOL program, is treated as though described in the COBOL
program as an unsigned elementary numeric integer data item
eight digits long. The minimum value of TIME is 00000000;
maximum value is 23595999.

ACCEPTed data does not perform functions declared in the
definition of the variable such as BLANK WHEN ZERO or
JUSTIFIED. All input, including numbers, is left-justified.
When accepting numbers for calculations, use UNSTRING after
moving the input to a JUSTIFIED RIGHT field before doing
calculations. The following code is an example. Another
example is provided with UNSTRING below.

First Edition

DOC5039-184

Example
ID DIVISION.
PROGRAM-ID. CALC.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY-TOTAL
01 WORK-TOTAL
01 TOTAL-WORK

PIC X(8).
PIC X(8) JUSTIFIED RIGHT,
PIC S9(6)V99.

PROCEDURE DIVISION.
000-INITIALIZE.

DISPLAY 'WHAT IS INITIAL VALUE OF TOTAL?1.
DISPLAY ' ** NOTE FORMAT MUST NOT USE DECIMAL POINT.'
DISPLAY ' ** EX: TO REGISTER $45.25, ENTER 4525.'.
ACCEPT DISPLAY-TOTAL.
UNSTRING DISPLAY-TOTAL DELIMITED BY SPACE INTO WORK-TOTAL.
MOVE WORK-TOTAL TO TOTAL-WORK.
DIVIDE 100 INTO TOTAL-WORK.

First Edition

THE PROCEDURE DIVISION

Function

The ADD statement adds together two or more numeric values and stores
the resulting sum.

Format 1

f data-name-1) , data-name-2
ADD^ literal-1 [, literal-2 •• JO data-name-3 [ROUNDED]

I , arith-expr-2 .

[, data-name-n [ROUNDED]] •••

Format 2

r data-name-1
ADD J literal-1

||1U '2AUk i

, data-name-2 "] f" , data-name-3
, literal-2 [, literal-3

[; ON SIZE ERROR imperative-statement]

CORRESPONDING

CORR

[; ON SIZE ERROR imperative-statement]

itax Rules
1. In Formats 1 and 2, each data-name must refer to an elementary

numeric item, except that in Format 2 each item following
GIVING can be either an elementary numeric item or an
elementary numeric edited item.

2. Each literal must be a numeric literal.

First Edition

DOC5039-184

The maximum size of each operand is 18 digits. If all
operands, excluding those following the word GIVING, were to be
superimposed upon each other, aligned by their implied decimal
points, their composite could not exceed 18 decimal digits in
length.

In Format 3, elementary items subordinate to group-name-1 are
added to and stored into the corresponding elementary items
subordinate to group-name-2. Here, data-name-1 and data-name-3
must be group items.

General Rules

In Format 1, the values of the operands preceding the word TO
are added, the sum is added to the current value of data-name-3
and the result is stored in data-name-3. This process is
repeated for each operand following TO.

In Format 2, the values of the operands preceding the word
GIVING are added, and the sum is stored as the new value of
data-name-4.

In Format 3, data items in data-name-1 are added to and stored
in corresponding data items in data-name-2.

The ON SIZE ERROR option should be used when truncation of the
results could occur.

The rules for signs are those presented in the section on
ALGEBRAIC SIGNS in Chapter 4.

The ADD statement is governed by the rules for GIVING, ROUNDED,
SIZE ERROR, and CORRESPONDING in Arithmetic Statements in the
PROCEDURE Division at the start of this chapter, and by the
rules for Arithmetic Statements in Chapter 4.

Examples

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED.
ADD REGULAR-TIME, OVERTIME GIVING GROSS-PAY.
ADD CORRESPONDING DETAIL-LINE TO TOTAL-LINE.

The first statement would result in the total sum of INTEREST, DEPOSIT,
and BALANCE being rounded and placed in BALANCE, while the second would
result in the sum of REGULAR-TIME and OVERTIME being placed in the item
GROSS-PAY. The third statement causes elementary items in DETAIL-LINE
to be added to items of the same name in TOTAL-LINE.

First Edition

THE PROCEDURE DIVISION

ALTER

Function

The ALTER statement modifies a simple GO TO statement elsewhere in the
PROCEDURE division, thus changing the sequence of execution of program
statements.

Format

itax Rules

1. The procedure-names 1, 3, and so on contain a single GO TO
sentence without the DEPENDING clause.

2. The procedure-names 2, 4, and so on name other paragraphs or
sections in the PROCEDURE division.

General Rule

Execution of the ALTER statement modifies the GO TO statement of
the first procedure-name so that subsequent executions of the
modified GO TO statement cause transfer of control to the second
procedure-name.

First Edition

DOC5039-184

CALL

Function

The CALL statement allows one program to communicate with one or more
other programs. It causes control to be transferred from one object
program to another within a runfile, with both programs having access
to data items referred to in the CALL statement.

Format

CALL literal-1 [USING data-name-1 [, data-name-2] •••]

[; ON OVERFLOW imperative-statement]

The CALL statement is presented in detail in Chapter 9, INTERPROGRAM
COMMUNICATION.

First Edition

THE PROCEDURE DIVISION

CLOSE

Function

The CLOSE statement terminates the processing of files.

Format

CLOSE file-name-1 [, file-name-2]

itax Rule

The files referenced in the CLOSE statement need not all have the same
access or organization.

General Rules

1. A CLOSE statement should be executed before a STOP RUN is
executed, if any files were opened by the program.

2. A CLOSE statement implies a preceding OPEN on the same file.

First Edition

DOC5039-184

COMPUTE

Function

The COMPUTE statement evaluates an arithmetic expression and then
stores the result in a designated item.

Format 1

[, data-name-2 f ROUNDED 11 ••• = arith expr

[; ON SIZE ERROR imperative-statement]

Format 2

itax Rules

1. In Format 1, data-names appearing to the left of the equals
sign must refer to either an elementary numeric item or an
elementary numeric edited item.

2. In Format 2, data-name-1 and data-name-2 must be group items.

General Rules

1. The COMPUTE statement is governed by the rules for ROUNDED,
SIZE ERROR, and CORRESPONDING in Arithmetic Statements in the
PROCEDURE Division at the start of this chapter. It is also
governed by the general rules for ARITHMETIC EXPRESSIONS
described in Chapter 4.

2. The COMPUTE statement allows the user to combine arithmetic
operations without the length restrictions on composite of
operands and on receiving data items imposed by the arithmetic
statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

First Edition

THE PROCEDURE DIVISION

In Format 1, an arithmetic expression may consist of a single
data-name or literal. It provides a method of setting the
values of data-name-1, data-name-2, and so on, equal to the
value of the arithmetic expression.

In Format 1, if more than one data-name precedes the equals
sign, the value of the arithmetic expression is computed, and
then this value is stored as the new value of each data-name.

of mate
ta items in data-name-1 are

ta items in data-name-2.

First Edition

DOC5039-184

OOPY

Function

The OOPY statement incorporates OOBOL source coding from another file
into a source program at compile time. This is a compiler-directing
function.

Format 1

COPY 'file-name' \ PUFD-name'
I I IN I

REPLACING { ,

==pseudo-text-1==
data-name-1

literal-1
reserved-word-1

==pseudo-text-2-
data-name-2

literal-2
reserved-word-2

Format 2

COPY literal-1 literal-2

REPLACING < ,

==pseudo-text-1=:
data-name-1

literal-3
reserved-word-1

==pseudo-text-2=
data-name-2

literal-4
reserved-word-2

itax Rules

1. OF and IN are interchangeable and mutually exclusive.

2. A OOPY statement may occur anywhere in the source program, in
any division where a character-string or a separator might
usually occur, except that it may not occur within the object
of another OOPY statement, or in a comment-entry. COPY copies
everything in the text-file.

3. Pseudo-text is a literal string, with no quote marks unless
these quote marks are to appear in the text. Pseudo-text
allows quotes to be copied.

First Edition

THE PROCEDURE DIVISION

General Rules

1. The file-name must be the name of a PRIMOS file containing
COBOL source code.

2. The UFD-name must be the UFD name that contains the file-name.
If no UFD-name is given, the UFD of the sources-program is
assumed.

Of the examples below, the first and second ones copy files
contained on the same UFD as the source program. The third and
fourth copy files contained in a UFD named SUB. In the last
example, the UFD-name contains a period, which has a special
significance in COBOL; to avoid an error, the UFD-name is
enclosed in quotes.

FILE-CONTROL. OOPY file-name.
SECTION-NAME SECTION. OOPY file-name.
FD MASTER-FILE COPY file-name OF SUB.
01 MASTER-REOORD. OOPY file-name IN SUB.
PARAGRAPH-NAME. COPY file-name IN 'ANNE.F1.

3. Literals 1 and 2 are nonnumeric literals. The literal-3 must
be a PRIMOS file-name. The literal-4 must be a UFD-name.

Example

The following is from DATA division coding in a source program.

01 MASTER-DESCRIPTION. COPY MASDES
REPLACING ==03= BY =05=

=PIC X(15)= BY =PIC X(20) =
01 EMPLOYMENT-HISTORY.

The file MASDES must be in the same UFD as the source program. It must
not contain the 01 MASTER-DESCRIPTION entry; it might have the
format:

03 BADGE-NO PIC 9(5).
03 NAME.

10 LAST-NAME PIC X(15) .
10 FIRST-NAME PIC X(15).

First Edition

DOC5039-184

After compilation, the listing file would include the following:

60
61
62 01 MASTER-DESCRIPTION. OOPY MASDES
63 REPLACING =03= BY ==05
64 =PIC X(15) = BY

< 1> 05 BADGE-NO PIC 9(5).
< 2> 05 NAME.
< 3> 10 LAST-NAME PIC X (20).
< 4> 10 FIRST-NAME PIC X(20) .

65 01 EMPLOYMENT-HISTORY.
66
67

In this example, the OOPY statement part of lines 62-64 is a comment
only. Line numbering of the inserted text is independent of the line
numbers of the source.

First Edition

DOC5039-184

Function

The DISPLAY statement causes low-volume data to be output to the
console.

Format

T data-name-1 "] |~ data-name-2 "1
D I S P L A Y \ i , • • • [U P O N m n e m o n i c - n a m e]

l i t e r a l - 1 l i t e r a l - 2

llYifciSIMZCty^iy^fliHelJ

itax Rules

1. The mnemonic-name must be specified in the OONSCLE IS clause of
the SPECIAL-NAMES paragraph in the ENVIRCNMENT division.

2. The maximum number of characters that may be output is 256 per
DISPLAY statement. More causes truncation.

3. Display items are left-justified (truncated on trie right).

General Rules

1. When the UPON clause is omitted, the system default is the
termina l .

2. If a figurative-constant is given as an operand, it will be
displayed as a single character.

_ i l i n g
Table 8-1. The size of the displayed data item, in characters
is the number of P's plus the number of 9's in the PICTUR
clause, plus 3.

Prime extension: NO ADVANCING displays a line of informatio

allows, for example, an answer t
♦-^e same line with the question

First Edition

Examples

THE PROCEDURE DIVISION

Statement Output

data-name (numeric) DISPLAY BADGE-NO

data-name (nonnumeric) DISPLAY NAME

li teral DISPLAY 'END-JOB'

52207

JOHN DOE

END-JOB

figu ra t i ve -cons tan t DISPLAY ZERO

DISPLAY GOMPTEST

MM^dM]Piit&I&^±

DISPLAY FLQAT-2

2A«^i!A^iyJW.J

-3.2300000000000E+00I

Bifeja^M?tJoi5ni?Mai

INDEX DISPLAY TESTINDEX (blank)

Table 8-1
DISPLAY of Binary Data Types

(After Conversion, If Necessary, to Display Type)

Or ig ina l
Data Type

Size of Display Item*
in Characters (Bytes)

Signed OOMP — 16 bits— 3 2 b i t s 1
— 6 4 b i t s 2

U n s i g n e d C O M P — 1 6 b i t s !— 3 2 b i t s 1
— 6 4 b i t s 2 ;

9
4
2
9
4
2

I (§§&§̂
i i

* If the data item is a group item, then the item
displayed is treated as alphanumeric with a size equal
to the total number of bytes in the group.

First Edition

DOC5039-184

DIVIDE

Function

The DIVIDE statement divides one numeric data item into another and
stores the quotient and, optionally, remainder.

Format 1

{data-name-1 1
literal-1 [INTO data-name-2 [ROUNDED]
arith-expr-1 J

[, data-name-3 [ROUNDED]] •••

[; ON SIZE ERROR imperative-statement]

Format 2

f data-name-1] r INTO ~) f data-name-2
DIVIDE I l i te ra l -1 U l i te ra l -2H te r a l - 1 M U l i t e r a l - 2

arith-expr-1 J [BY J [arith-expr-2

GIVING data-name-3 [ROUNDED]

[, data-name-4 [ROUNDED 11 •••

Format 3

r data-name-1
DIVIDE J literal-1

i UtV-yiAAl

INTO] f data-name-2
N literal-2

BY J t arith-expr-2

Hifl'KI'JH'l l

REMAINDER data-name-4 [; ON SIZE ERROR imperative-statement]

Format 4

ORRESPONDING
{M&oB:ui^i!

Ig^JKN^^slsltJsiriiV.H^a'AJ^MMi'itJnll

:U--ll1f'.|llT Î

First Edition

THE PROCEDURE DIVISION

itax Rules

1. Each data-name must refer to an elementary numeric item, except
that a data-name associated with the GIVING or REMAINDER phrase
can refer either to an elementary numeric item or to an
elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. If all
receiving data items were to be superimposed upon each other,
aligned by their decimal points, their composite should not
exceed 18 decimal digits in length.

Division by 0 always causes a size-error
ERROR is specified. If no SIZE ERROR
division by 0 causes the program to abort.

condit ion i f SIZE
clause is present,

The DIVIDE statement is governed by the rules for GIVING,
ROUNDED, SIZE ERROR, and CORRESPONDING at the start of this
chapter, and by the rules for Arithmetic Statements in Chapter

irae extension
st be group
tfJDE statemen

•t 4, data-

General Rules

In Format 1, data-name-1 or l i teral-1 is div ided into
data-name-2, data-name-3, and so on; the quotient then
replaces the dividend in data-names 2, 3, and so on.

In Format 2, division occurs according to these rules:

• If the keyword INTO is used, the value of the first
operand is divided into the value of the second, and the
result is stored in data-name-3, data-name-4, and so on.

• If the keyword BY is used, the value of the first
operand is divided by the value of the second, and the
result is stored in data-name-3, data-name-4, and so on.

First Edition

DOC5039-184

Format 3 is used when a remainder from the division operation
is desired. The remainder in OOBOL is defined as the result of
subtracting the product of the quotient (data-name-^3) and the
divisor from the dividend. If data-name-3 is defined as a
numeric edited item, the quotient used to calculate the
remainder is an intermediate field that contains the unedited
quotient. If ROUNDED is used, the quotient used to calculate
the remainder is an intermediate field that contains the
quotient of the DIVIDE statement, truncated rather than
rounded.

The accuracy of the REMAINDER data item (data-name-4) is
defined by the calculation described above. Appropriate
decimal alignment and truncation (not rounding) are performed
for data-name-4, as needed.

When the ON SIZE ERROR phrase is used in Format 3, the
following rules pertain:

• If the size error occurs on the quotient, no remainder
calculation is meaningful. Thus, the contents of the
data i tems referenced by both data-name-3 and
data-name-4 remains unchanged.

• If the size error occurs on the remainder, the contents
of data-name-4 remains unchanged.

'2Sm\ L^af©(s &n @5ffi3a^j^1|ffre nil^lftf; ©tiljjgji fi i (T§ (c § (go)
. iv ided.

the quotient is placed in the matching elementary i

First Edition

THE PROCEDURE DIVISION

\9MH LIME EXTENSION

m directs the compiler to start a new page for the program listin

is statement causes the compiler to insert a form feed in the pro*,

anv division in the proqram. It must be in codina area B (Columns
)j)=wm.

First Edition

DOC5039-184

ENTER

Function

The ENTER statement is used for documentation only,
on the compiler or the compiled program.

It has no effect

Format

ENTER language-name [routine-name].

itax Rules

1. The language-name and routine-name following ENTER may be any
user-defined word. Each must contain at least one alphabetic
character.

2. A CALLed program may be written in a source language other than
OOBQL.

First Edition

THE PROCEDURE DIVISION

c t i o n

i EXHIBIT statement displays data at the user terminal,
debugging.

It is usef 1

EXHIBIT
literal

[NAMED] data-name

General Rules

1. The EXHIBIT statement may be inserted anywhere in the mOCEDURE
division to provide debugging information. Specified data is
exhibited on the terminal, in the formats shown for the DISPLAY
statement.

2. The EXHIBIT statement differs from DISPLAY in that both
data-name and its value, connected by an = character, are
displayed. The = character is preceded and followed b
space.

3. EXHIBIT is the same as EXHIBIT NAMED.

Example

Statement Output

First Edit ion

DOC5039-184

EXIT

Function

The EXIT statement provides an endpoint for a procedure or series of
procedures.

Format

EXIT.

itax Rules

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence may be the only sentence in the paragraph.
It should be the last sentence in its paragraph. It is never
required in Prime OOBQL.

First Edition

THE PROCEDURE DIVISION

EXIT PROGRAM

Function

The EXIT PROGRAM statement marks the logical end of a called program.

Format

EXIT PROGRAM.

itax Rules
1. The EXIT PROGRAM statement must appear in a sentence by itself.

2. The EXIT PROGRAM sentence may be the only sentence in the
paragraph. If used, it should be the last sentence in its
paragraph.

General Rules

1. The execution of an EXIT PROGRAM statement in a called program
causes control to be returned to the calling program. An EXIT
PROGRAM statement in a program that is not invoked by a CALL
statement functions as an EXIT statement.

2. When the -OLD compile option is used, EXIT PROGRAM suppres
the request for interactive file assignments. (See Chapter

First Edition

DOC5039-184

GO TO

Function

The GO TO statement transfers control from one part of the PROCEDURE
division to another.

Format 1

GO TO [procedure-name]

Format 2

data-name
DEPENDING ON

itax Rules

1. A paragraph or section-name referenced by an ALTER statement
can consist only of that procedure-name followed by a Format-1
GO TO statement.

2. In Format 2, data-name must be an elementary numeric integer
data item. The arith-expr should have an integer value.

3. A procedure-name may be either a paragraph-name or a
section-name.

4. A Format-1 GO TO statement without a procedure-name must be the
only statement in its paragraph.

%e use o
ime ext

General Rules

1. In Format 1, if procedure-name is not given, an ALTER statement
referring to this GO TO must be executed before the GO TO is
executed, otherwise control passes to the next statement.

2. When a Format-1 GO TO statement is executed, control is
transferred to procedure-name, or to another procedure-name if
the GO TO statement has been modified by an ALTEIR statement.

First Edition

THE PROCEDURE DIVISION

When a GO TO statement represented by Format 2 is executed,
control is transferred to procedure-name-1, procedure-name-2,
and so on, depending on the value of the data-name or the
arithmetic expression. This value should be between 1 and n,
where n is the number of procedure-names listed. If the value
of the data-name or the arithmetic expression is 1, control
goes to the first procedure in the series, and so on. If. the
value of the data-name is anything other than the positive and
unsigned integers between 1 and n, then no transfer occurs and
control passes to the next statement in the normal sequence for
execution.

First Edition

THE PROCEDURE DIVISION

Function

The IF statement causes the evaluation of a condition, permitting the
execution of specified statements depending on the value of the
condi t ion.

Format

IF condition ; [I
NEXT SENTENCE

statement-1

ELSE

OTHERWISE

statement-2

NEXT SENTENCE

itax Rules

1. The conditions in the IF statement must conform to the rules
for conditions specified in CONDITIONAL EXPRESSIONS in Chapter
4 and in the section on Arithmetic Statements in the PROCEDURE
Division at the beginning of this chapter.

2. The ELSE or OTHERWISE clauses may be omitted if they are not
needed.

3. THEN and OTHERWISE are Prime extensions. THEN is alwa;
optional. OTHERWISE and ELSE are equivalent.

4. The OORRESPONDING option is used with a relal~)th operands of the relation must be group ii

General Rules

If the condition is true, either statement-1 or NEXT SENTENCE
is executed as follows:

• The statement-1, if specified, is executed. Control
then passes to the next executable sentence following
the IF statement, unless statement-1 contains a branch
or conditional statement, in which case control is
transferred according to the rules for that statement.

• If the NEXT SENTENCE phrase is specified, control passes
to the next executable sentence.

First Edition

DOC5039-184

The ELSE/OTHERWISE clause, if any, is ignored.

Examples:
IF BALANCE = 0 GO TO NOT-FOUND
ELSE NEXT SENTENCE.

IF X = 1.74 THEN MOVE 'M' TO FLAG OTHERWISE MOVE 'N'
TO SECOND-TIME.

IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1 TO
SKIP-COUNT ELSE PERFORM BYPASS.

If the condition is false, statement-1 or its replacement NEXT
SENTENCE is bypassed, and control passes as follows:

The statement-2, if specified, is executed. Control
then passes to the next executable sentence, unless
statement-2 contains a branch or conditional statement,
in which case control is transferred according to the
rules for that statement.

If no ELSE/OTHERWISE clause is specified, or if
ELSE/OTHERWISE NEXT SENTENCE is specified, control
passes to the next executable sentence.

The IF statement is said to be "nested" whenever statement-1 or
statement-2 contains another IF statement. In nested IF
statements, ELSEs are paired with IFs in the following way.
Any ELSE encountered applies to the last preceding IF that has
not been already paired with an ELSE. It is not required that
the number of ELSEs in a sentence be the same as the number of
IFs, but there may not be more ELSEs than IFs. OTHERWISE
follows the same pairing rule as ELSE with nested IFs.

Example:

IF X = Y
THEN IF A = B

THEN MOVE "*" TO SWITCH
ELSE MOVE "A" TO SWITCH

ELSE MOVE SPACE TO SWITCH.

The flow of this sentence may be represented by the tree
structure in Figure 8-3.

First Edition

THE PROCEDURE DIVISION

START

FALSE

NEXT
SENTENCE

Nested IF Structure
Figure 8-3

First Edition

DOC5039-184

Note

The following condition types are explained in detail in
Chapter 4. See Chapter 4 also for status-name, negated
conditions, and combined abbreviated conditions.

4. The relation condition has the format:

data-name-1
literal-1
arith-expr-1
index-name-1

IS [NOJ_] GREATER THAN
IS [NOT] LESS THAN
IS [NOT]EQUAL TO
IS [NOT] >
IS [NOT] <
IS[NOT] =

data-name-2
literal-2
anth-expr-2
index-name-2

5. The class condition determines whether an operand is numeric or
alphabetic. Its format is:

data-name IS [NOT]
NUMERIC

ALPHABETIC

The NUMERIC test is valid only for a group, numeric DISPLAY,
OOMP-3, or character item. The ALPHABETIC test is valid onlv
for a group or character item. Lowercase letters are no
considered alphabetic in class tests; see Chapter 4 for
detailed discussion.

6. The condition-name condition tests the value of a conditional
variable. Its format is:

[NOT] condition-name

The condition-name is defined as a level-88 data item in a
record-description-entry in the DATA division. The conditional
variable is the data item immediately preceding the level-88
item or items. It may also be a switch-status name. (See
Chapter 4.)

7. The sign condition tests an arithmetic expression to determine
whether its value is greater than, less than, or equal to zero.
The format is:

data-name

arith-expr

f POSITIVE
IS [NOT]] NEGATIVE

ZERO

8. Two or more conditions can be combined by the logical operators
AND and OR. The format for a combined condition is:

[NOT] condition-1 [NOT]condition-2

First Edition

THE PROCEDURE DIVISION

INSPECT

Function

The INSPECT statement enables the programmer to examine a
character-string item and to tally, replace, or tally and/or replace
occurrences of single characters or groups of characters in the item.

Format 1

INSPECT data-name-1 TALLYING

data-name-2 FOR H data-name-3literal-1
CHARACTERS

BEFORE "] r data-name-4
[initial \A F T E R l i t e r a l - 2

Format 2

INSPECT data-name-1 REPLACING

CHARACTERS BY

LEADING
FIRST

BEFORE

AFTER

data-name-6 1

l i t e r a l - 4 J

f B E F O R E] r
\ \ I N I T I A L \
1 A F T E R 1 (

r data-name-5 "1 f data-name-6 1

1 literal-3 j 1 literal-4 J

data-name-7

literal-5

INITIAL
data-name-7

literal-5

Format 3

INSPECT data-name-1 TALLYING

f f j ALL "I J data-name-3
, data-name-2 FOR \ ,\l LEADING J I literal-1

I I CHARACTERS

BEFORE

AFTER
INITIAL

data-name-4

literal-2

First Edition

DOC5039-184

REPLACING

f data-name-6] f BEFORE] f data-name-7
C H A R A C T E R S B Y \ \ \ H N I T I A L \

l i t e r a l - 4 A F T E R l i t e r a l - 5

LEADING
FIRST

data-name-5] f data-name-6
BY

l i t e r a l - 3 l i t e r a l - 4

BEFORE 1 r data-name-7
[INITIAL \A F T E R l i t e r a l - 5

itax Rules

1. The operand after INSPECT (data-name-1) must be a group item or
an elementary item described (implicitly or explicitly) as
USAGE IS DISPLAY.

2. The operands of all clauses except TALLYING may be either data
items or literals. If they are data items, these operands must
reference elementary alphabetic, alphanumeric or numeric items
described (implicitly or explicitly) as USAGE IS DISPLAY.

3. If they are literals, each of these operands must be a
nonnumeric literal and may be any figurative constant, except
ALL.

4. Literals 1 through 5 and data-names 3 through 7 may be
characters or groups of characters.

5. Operands of INSPECT may be no longer than 32767 bytes in
leng th .

Rules for Formats 1 and 3

6. The operand of TALLYING (data-name-2) must be an elementary
numeric data item.

7. If either literal-1 or literal-2 is a figurative constant, the
figurative constant refers to an implicit one-character data
item.

First Edition

THE PROCEDURE DIVISION

Rules for Formats 2 and 3

8. The size of literal-4 or data-name-6 must be equal to the size
of literal-3 or data-name-5. When a figurative constant is
used as literal-4, the size of the figurative constant is equal
to the size of literal-3 or the size of data-name-5.

9. When the CHARACTERS phrase is used, literal-4, literal-5, or
the size of data-name-6 and data-name-7 must be one character
in length.

10. When a figurative constant is used as literal-3, literal-4, or
data-name-6 must be one character in length.

General Rules

1. The INSPECT statement enables examination of a character-string
item, permitting various combinations of the following actions:

» Counting appearances of a specified character

• Replacing a specified character or group of characters
by an alternative

» Qualifying and limiting the above actions according to
the appearance of other specific characters

Inspection includes the comparison cycle, the establishment of
boundaries for the BEFORE or AFTER phrase, and the mechanism
for tallying and/or replacing. It begins at the leftmost
character position of data-name-1 and proceeds from left to
right to the rightmost character position, as described in
General Rules 4 through 6.

2. For use in the INSPECT statement, the contents of data-names 1,
3, 4, 5, 6, and 7 will be treated as follows:

• If any of these data-names is described as alphanumeric,
the INSPECT statement treats the contents of each such
field as a character-string.

• If any of these data-names is described as alphanumeric
edited, numeric edited, or unsigned numeric, the data
item is inspected as though it had been redefined as
alphanumeric and the INSPECT statement referred to the
redefined data item.

• If any of these data-names is described as signed
numeric, the data item is inspected as though it had
been moved to an unsigned numeric data item of the same
length.

First Edition

DOC5039-184

Al l re ferences to l i tera l -1, l i tera l -2, l i tera l -3, l i tera l -4,
and literal-5 apply equally to the contents of data-names 3, 4,
5, 6, and 7, respectively.

During inspection of the contents of data-name-1, each properly
matched occurrence of literal-1 is tallied (Formats 1 and 3)
and/or each properly matched occurrence of literal-3 is
replaced by literal-4 (Formats 2 and 3).

The comparison operation to determine the occurrences of
literals to be tallied and/or replaced (literals 1 and 3)
occurs as follows:

• The operands of the TALLYING and REPLACING phrases are
considered in the order they are specified in the
INSPECT statement. The first literal is compared to an
equal number of contiguous characters, starting with the
leftmost character position in the data item referenced
by data-name-1. The l iteral and that portion of
data-name-1 match if, and only if, they are equal
character for character.

• If no match occurs in the comparison of the first
literal, the comparison is repeated with each successive
literal, if any, until either a match is found or there
is no next successive literal. When there is no next
s u c c e s s i v e l i t e r a l , t h e c h a r a c t e r p o s i t i o n i n
data-name-1 immediately to the right of the leftmost
character position considered in the last comparison
cycle is considered as the leftmost character position,
and the comparison cycle begins again with the first
l i t e r a l .

Whenever a match occurs, tallying and/or replacing takes
place as described in General Rules 8 and 9. The
character position in data-name-1 immediately to the
r i gh t o f t he r i gh tmos t cha rac te r pos i t i on t ha t
participated in the match is now considered to be the
leftmost character position of data-name-1 and the
comparison cycle starts again with the first literal.

The comparison operation continues until the rightmost
character position of data-name-1 has participated in a
comparison or has been considered as the leftmostcomparison or has
character position.
terminated.

When this occurs, inspection is

First Edition

THE PROCEDURE DIVISION

This series of steps may be represented as in Figure
8-4, for the statements

MOVE 0 TO TALLY-WORD.
INSPECT TARGET-WORD TALLYING TALLY-WORD FOR ALL 'SS*.

The solid lines mark the two characters being inspected
for a match with 'SS' in each step.

Steps in INSPECT ... TALLYING
Figure 8-4

If the CHARACTERS phrase is specified, an implied
one-charac te r operand par t i c ipa tes in the cyc le
described in the preceding four paragraphs, except that
no comparison to the contents of data-name-1 takes
place. This implied character is considered always to
m a t c h t h e l e f t m o s t c h a r a c t e r o f d a t a - n a m e - 1
participating in the current comparison cycle.

If the BEFORE or AFTER phrase is not specified, literal-1,
literal-3, or the implied operand of the CHARACTERS phrase
participates in the comparison operation.

First Edition

DOC5039-184

If the BEFORE phrase is specified, the associated literal-1,
literal-3, or the implied operand of the CHARACTERS phrase
participates only in those comparison cycles which involve that
portion of data-name-1 from its leftmost character position up
to, but not including, the first occurrence of l iteral-2,
literal-5. The position of this first occurrence is determined
before the first cycle of the comparison operation is begun.
If, on any comparison cycle, literal-1, literal-3, or the
implied operand of the CHARACTERS phrase is not eligible to
participate, it is considered not to match the contents of
data-name-1. If there is no occurrence of literal-2, literal-5
within data-name-1, then the associated literal-1, literal-3,
or the implied operand of the CHARACTERS phrase participates in
the comparison operation as though the BEFORE phrase had not
been specified.

If the AFTER phrase is specified, the associated literal-1,
literal-3, or the implied operand of the CHARACTERS phrase may
participate only in those comparison cycles which involve that
portion of data-name-1 from the character position immediately
to the right of the rightmost character position of the first
occurrence of literal-2, literal-5. The position of this first
occurrence is determined before the first cycle of the
comparison operation is begun. If, on any comparison cycle,
literal-1, literal-3, or the implied operand of the CHARACTERS
phrase is not eligible to participate, it is considered not to
match the contents of data-name-1. If there is no occurrence
of literal-2, literal-5 within data-name-1, then the associated
literal-1, literal-3, or the implied operand of the CHARACTERS
phrase is never eligible to participate in the comparison
operation.

The content of data-name-2 is not initialized by execution of
the INSPECT statement.

The TALLYING clause causes character-by-character or
character-group by character-group comparison, from left to
right, of data-name-1 with data-name-3 or literal-1. The count
is accumulated in data-name-2. See example 1 below.

• When the AFTER INITIAL clause is present, the counting
process begins only after detection of a character or
character-group in data-name-1 matching the operand
following INITIAL. If BEFORE INITIAL operand is
specified, the count ing process terminates upon
encountering a character in data-name-1 that matches the
operand following INrTIAL. See examples 2 and 4 below.

• If the ALL phrase is specif ied, the content of
data-name-2 is incremented by one for each occurrence of
the operand after FOR matched within the content of
data-name-1.

First Edition

THE PROCEDURE DIVISION

If the LEADING phrase is specified, the content of
data-name-2 is incremented by one for each contiguous
occurrence of the operand after FOR matched within the
content of data-name-1, provided that the leftmost such
occurrence is at the point where the comparison began
and where the operand after FOR was eligible to
participate.

If the CHARACTERS phrase is specified, the content of
data-name-2 is incremented by one for each character in
data-name-1.

9. The reserved words ALL, LEADING, and FIRST apply to each
succeeding BY phrase until the next adjective appears.

10. The REPLACING clause causes replacement of characters under
specified conditions.

If BEFORE INITIAL operand is present, replacement does
not continue after detection of a character in
data-name-1 matching the operand after INITIAL. If
AFTER INITIAL is present, replacement does not commence
until detection of a character in data-name-1 matching
the operand after INITIAL.

If the ALL phrase is specified, each occurrence of the
operand after REPLACING matched within the content of
data-name-1 is replaced by the operand after BY.

■ If the LEADING phrase is specified, each contiguous
occurrence of the operand after REPLACING matched within
the content of data-name-1 is replaced by the operand
after BY, provided that the leftmost occurrence is at
the point where the comparison began and where the
operand after REPLACING was eligible to participate.
See example 6 below.

If the FIRST phrase is specified, the leftmost
occurrence of the operand after REPLACING matched within
the content of data-name-1 is replaced by the operand
after BY. See example 5 below.

When the CHARACTERS phrase is specified, each character
in data-name-1 is replaced by the operand after BY. See
example 3 below.

11. A Format-3 INSPECT statement is executed as though two separate
INSPECT statements were written. The first contains only a
TALLYING clause, the second contains only a REPLACING clause.
See example 4 below.

First Edition

DOC5039-184

Examples

1. INSPECT name TALLYING counter FOR ALL 'L'.

Name Before Counter After Name After

LILLY
SMALL

LILLY
SMALL

2. INSPECT name TALLYING counter FOR LEADING 'B1
AFTER INITIAL 'A'
REPLACING CHARACTERS BY fX\

Name Before Counter After Name After

ABACK
CABBAGE

XXXXX
XXXXXXX

3. INSPECT name REPLACING CHARACTERS BY '$'
BEFORE INITIAL '.'.

Name Before Counter After Name After

AB D.99 $$$$$.99

4. INSPECT name TALLYING counter FOR CHARACTERS
AFTER INITIAL 'E'
REPLACING ALL 'B' BY 'A1.

Name Before Counter After Name After

DEBATE
IBEX

DEAATE
IAEX

5. INSPECT name REPLACING FIRST 'A' BY fP'
AFTER TNTTIAL 'M1.

Name Before Counter After Name After

LLAMAA
LLOYD

LLAMPA
LLOYD

6. INSPECT "ABC/DEF" REPLACING LEADING "ABC" BY
"123".

Name Before Counter After Name After

ABC/DEF 123/DEF

First Edition

THE PROCEDURE DIVISION

MERGE

Function

Combines two or more sorted files on a set of specified keys, and
during the process makes records available, in merge order, to an
output procedure or file.

Format

f ASCENDING 1
MERGE file-name-1 ON \ \ KEY data-name-1 [, data-name-2]

DESCENDING

f ASCENDING]
ON \ I KEY data-name-3 [, data-name-4]

DESCENDING

fflqyiiiigcraTOija«t^tramiTnsnn

USING file-name-2, file-name-3 [, file-name-4]
" f THROUGH 1

OUTPUT PROCEDURE IS section-name-1 I \ \ section-name-2
L I THRU J

GIVING file-name-5

The MERGE statement is discussed in Chapter 11.

First Edition

DOC5039-184

MOVE

Function

The MOVE statement transfers data from one area of main storage to
another, performing conversion and editing as indicated.

Format 1

f data-name-1
MOVE \ literal

L arith-expr-1
I M i l f K M ^ I r t

Hifl 'Jk l 'J i ' a-name-3 [ROUNDED]]

Format 2

MOVE
CORRESPONDING

CORR
liWKI'H'l

l i@ii iHJisM"] immmu

tax Rule

1. The data-name-1, arith-expr, and the literal represent the
sending area; data-name-2, data-name-3 represent the receiving
area.

2. When the CORRESPONDING clause is used, both operands must be
group items.

3. An index data item cannot be an operand of MOVE.

ROUNDED, and
t is a Prime e

General Rules

1. When a group item is a receiving field, characters are moved
without conversion and without editing.

First Edition

THE PROCEDURE DIVISION

During elementary moves editing occurs and alignment is
performed according to the alignment rules in the section DATA
REPRESENTATION AND ALIGNMENT in Chapter 4. Any necessary data
conversion Is done as described in the following rules.
Legality of moves is summarized in Table 8-2.

Moves of numeric items to numeric or numeric edited fields
follow these rules:

The items are aligned by decimal point, with generation
of zeros or truncation on either end, as required.

When the types of the source field and receiving field
differ, conversion to the type of the receiving field
takes place.

If the receiving field is numeric edited, the item moved
may have special editing performed on it such as
suppression of zeros, insertion of a dollar sign, and
decimal point alignment, as specified by the PICTURE
clause of the receiving field.

« Conversion of signs follows these rules. When the
receiving item is signed, the sign of the sending item
is placed in it. If the sending item is unsigned, a
positive sign is generated. When the receiving item is
unsigned, the absolute value of the sending item is
moved.

When the sending item is alphanumeric and the receiving area is
numeric or numeric edited, data is moved as if the sending item
were an unsigned integer. The discussion in General Rule 3
appl ies.

For moves to and from alphabetic and alphanumeric fields, the
following rules apply:

The characters are placed in the receiving area from
left to right (unless JUSTIFIED RIGHT applies).

If the receiving field is not completely filled by data
being moved, the remaining positions are filled with
spaces.

If the source field is longer than the receiving field,
the move is terminated as soon as the receiving field is
filled, resulting in right truncation.

If the sending item is signed numeric and the receiving field
is alphanumeric, the sign is not moved. If the sign occupies a
separate character position, that character is not moved. The
discussion in General Rule 5 applies.

First Edition

DOC5039-184

If the sending item is nonnumeric and the receiving item is
numeric, the sending field is assumed to be a numeric integer,
and a numeric move is generated.

When overlapping fields are used as operands, results are
undefined.

When the CORRESPONDING option is used, data-name-1 and
data-name-2 must be group items. Elementary items subordinate
to data-name-1 are moved to matching items subordinate to
data-name-2. The move is treated as a series of elementary
moves. See the rules for OORRESPONDING at the beginning of
Chapter 8.

The SIZE
numeric MOVEs.
arithmetic statemen chapter.

11. Table 8-2 summarizes the various types of moves permitted with
the MOVE statement.

First Edition

THE PROCEDURE DIVISION

Table 8-2
Moves by Category

(Y = Permitted)

Receiving Field

Sending
Data
Item

\% \\ \ ■>■ \

A l p h a b e t i c Y Y

Alphanumeric edited

Numeric integer

Numeric noninteger

Numeric edited

Alphanumeric

OOMP-1

OOMP-2

COMP-

Y Y(1)Y(1) (2) Y 12);, (2) Y(l)

(1) Permitted. Sending field must contain only digits 0-9, +, or -.

(2) Permitted. Sending field must contain only digits 0-9.

First Edition

DOC5039-184

MULTIPLY

Function

The MULTIPLY statement computes the product of two numeric data items
and stores the result.

Format 1

{data-name-1]
literal-1 [BY data-name-2 [ROUNDED]
arith-expr-1 J

[, data-name-3 f ROUNDED 11 •••

[; ON SIZE ERROR imperative-statement]

Format 2

f data-name-1 ~| f data-name-2
MULTIPLY-^ literal-2 \ BY \ literal-3

[; ON SIZE ERROR imperative-statement]

Format 3

itax Rules

1. Each data-name must refer to an elementary numeric item, except
that in Format 2 the operands after GIVING must be elementary
numeric or numeric edited.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. The
composite of operands in Format 1 must not contain more than 18
decimal digits.

First Edition

THE PROCEDURE DIVISION

4. In Format 3, data-name-1 and data-name-2 must be group items.
of 00* ension

General Rules

1. In Format 1 the product will be stored in data-name-2.

2. When the GIVING option is used, the product is stored in
data-name-3, data-name-4, etc.

3. The rules for signs are those presented in ALGEBRAIC SIGNS in
Chapter 4.

4. The MULTIPLY statement is governed by the rules for GIVING,
ROUNDED, and SIZE ERROR in the rules for Arithmetic Statements
in the PROCEDURE Division at the start of this chapter, and by
the rules for Arithmetic Statements in Chapter 4.

5. In Format 3, elementary items subordinate to data-name-1 are
multiplied by matching elementary items subordinate to
data-name-2. Each result is stored in the associated
elementary item subordinate to data-name-2.

First Edit ion

DOC5039-184

■E allows comment entries in the PROCEDURE division.

Format

NOTE comment-

itax Rules

2. If NOTE is the first statement in a paragraph, the em
paragraph is treated as a comment by the compiler. If NOTE i;
not the first statement in a paragraph, only the text throug]
the first period is treated as a comment.

eral Rule

may appear only in the PROCEDURE division,

MOVE ALL 1 TO ITEM-1.
NOTE THE FOLLOWING TEST ALLOWS OPENING OF A SECOND DISK INPUT FIL

IF THE SERIAL NUMBER IS ALL Vs, OTHERWISE DISK-FILE-1 WILL
BE CLOSED, REOPENED, AND READ AGAIN.

IF NAME = TTEM-1 PERFORM 150-SEOOND-INPUT OTHERWISE PERFORM
180-REDPEN.

First Edition

THE PROCEDURE DIVISION

Function

The OPEN statement initiates the processing of files and enables other
input/output operations, such as label checking and writing.

Format 1

OPEN
INPUT file-name-1 [, file-name-2]
OUTPUT file-name-3 [, file-name-4]
l-O file-name-5 [, file-name-6]
EXTEND file-name-7 [, file-name-8]

Format 2

OPEN
INPUT file-name-1 [, file-name-2]
OUTPUT file-name-3 [, file-name-4]
l-O file-name-5 [, file-name-6]

tax Rules

1. For each file, an OPEN statement must be executed prior to a
READ, WRITE, DELETE, START, CLOSE, or REWRITE statement for
that fi le .

2. The files referred to in the OPEN statement need not all have
the same organization or access.

3. The EXTEND phrase can be used only for sequential files.

The information here pertains to sequential files. See
Chapters 12 and 13 for information on indexed files and
relat ive files, respectively.

General Rules

1. Format 1 is used for sequential l-O.

2. Format 2 is used for indexed 1-0 and relative l-O.

3. A file opened as INPUT can only be accessed in a READ
statement.

First Edition

DOC5039-184

4. A file opened as OUTPUT can only be accessed in a WRITE
statement.

5. A file opened as 1-0 can be accessed by a READ, REWRITE (disk
only), nonsequential DELETE, or WRITE statement.

6. A file may be opened with the INPUT, OUTPUT, EXTEND, and 1-0
phrases in the same program. Following the initial OPEN, each
subsequent OPEN statement for that same file must be preceded
by a CLOSE statement for that file.

PRIMOS to create a file, writing standard labels if they are
specified in the corresponding file-description-entry. OPEN
with the EXTEND or INPUT option requires that the file
designated by file-name already exist.

8. The file-description-entry for files with INPUT, l-O, or EXTEND
(fi le -name-1 , fi l e -name-2 , fi l e -name-5 , fi l e -name-6 ,
file-name-7, or file-name-8) must be equivalent to that used
when this file was created. These are files that already
e x i s t .

9. The current record pointer is a conceptual flag pointing to the
next record to be accessed. For files being opened with the
INPUT or 1-0 phrase, the OPEN statement sets the current record
pointer to the first record currently existing within the file.
If no records exist in the file, the current record pointer is
set such that the next executed READ statement for the file
will result in an AT END condition.

10. When the EXTEND phrase is specified, the OPEN statement opens
the fi le , t hen pos i t i ons to the bo t tom o f t ha t fi le
(immediately following the last logical record). Subsequent

WRITE statements to the file will add records as though the
file had been opened with the OUTPUT phrase, with the current
record pointer positioned at end of file.

11. When the EXTEND phrase is specified and the LABEL RECORDS
clause indicates label records are present, the execution of
the OPEN statement includes the following steps:

• The beginning file labels are processed.

• The existing ending file labels are processed as
the file is being opened with the INPUT phrase,
labels are then deleted.

though
These

• Processing then proceeds as though the file had been
opened with the OUTPUT phrase.

12. No statement that references a given file can be executed,
except for the SORT and MERGE statements, until an OPEN
statement is successfully executed for that file.

First Edition

THE PROCEDURE DIVISION

13. If the desired file cannot be opened, then the program will
terminate abnormally at execution time with the error message
FILE NOT FOUND.

14. A file referenced in a SORT or MERGE statement may not be open
at the time of execution of the SORT or MERGE statement. Once
a file has been opened under control of SORT or MERGE, no 1-0
operation other than those under control of SORT or MERGE may
be executed until the sort or merge is completed.

First Edit ion

DOC5039-184

PERFORM

Function

The PERFORM statement is used to transfer control explicitly to one or
more procedures, and to return control implicitly to the normal
sequence after execution of the specified procedures.

Format 1

PERFORM procedure-name-1
THROUGH

THRU
proced u re-name-2

Format 2

PERFORM procedure-name-1
THROUGH

THRU
procedure-name-2

i n t e g e r j
data-name-1 > TIMES
arith-expr-1 J

Format 3

PERFORM procedure-name-1
THROUGH

THRU
procedure-name-2

UNTIL condition-1

Format 4

PERFORM procedure-name-1
THROUGH

THRU
procedure-name-2

VARYING
data-name-2

index-name-1
FROM

data-name-3
index-name-2
literal-1
arith-expr-1

First Edition

THE PROCEDURE DIVISION

(data-name-4
literal-2
arith-expr-2

UNTIL condition-1

AFTER
data-name-5

index-name-3
FROM

data-name-6
index-name-4
literal-3
arith-expr-3

r data-name-7 1 "1
BY I literal-4 [UNTIL condition-2

[arith-expr-4 j J

AFTER
data-name-8

index-name-5

f date-name-10
BV_\ literal-6

[arith-expr-6

FROM
data-name-9
index-name-6
literal-5
arith-expr-5

UNTIL condition-3

1. The words THROUGH and THRU are equivalent.

2. Each data-name represents an elementary numeric item described
in the DATA division. In Format 2, data-name-1 must represent
a numeric integer.

3. Each literal represents a numeric integer.

4. A procedure-name may be either a
paragraph-name.

section-name or a

5. If an index-name is used in the VARYING or AFTER phrase, then:

• The data-name in the associated FROM and BY phrases must
be an integer data item.

• The literal in the associated FROM phrase must be a
positive integer. The arithmetic expression must
evaluate to a positive integer.

• The literal in the associated BY phrase must be a
nonzero integer. The arithmetic expression must
evaluate to a positive integer.

First Edition

DOC5039-184

6. If an index-name is specified in the FROM phrase, then:

The data-name in the associated VARYING or AFTER phrase
must be an integer data item.

• The data-name in the associated BY phrase must be an
integer data item.

• The literal in the associated BY phrase must be an
in teger.

7. A literal in the BY phrase must not be zero.

8. Condition-1, condition-2, condition-3 may be any conditional
expression described in Chapter 4.

9. Where procedure-name-1 and procedure-name-2 are both specified
and either is the name of a procedure in a declarative section,
then both must be paragraph-names in the same declarative
sect ion.

Prime extension.
expressions in FROM and BY clauses

11. If the FROM and BY clauses are omitted, the value 1 is assumed.

General Rules

1. The data-names 4, 7, and 10 must not have a zero value.

2. If the PERFORM statement is written with no options, control is
transferred to the first statement of procedure-name-1. At the
completion of procedure-name-1, control is returned to the next
executable statement following the PERFORM statement.

3. If procedure-name-2 is specified and it is a paragraph-name,
then control is returned to the statement following the PERFORM
after the last statement of that paragraph is executed.

4. If procedure-name-2 is specified and it is a section-name, then
control is returned to the statement following the PERFORM
after the last statement of the last paragraph of that section
is executed.

5. In Formats 1 and 2:

If the THROUGH option is used, multiple paragraphs or sections
can be executed before control is returned to the statement
after PERFORM.

First Edition

THE PROCEDURE DIVISION

In Format 2:

If the TIMES option is used, procedures are performed the
number of times meant by data-name-1, arithmetic-expression-1,
or integer.

If data-name-1, arithmetic-expression-1, or integer is
initially zero or negative, the PERFORM statement is not
executed; control passes to the statement following the
PERFORM statement.

During execution of the PERFORM statement, if the value of
data-name-1 or arithmetic-expression-1 is changed, the number
of times the procedure is executed will nevertheless be that of
the initial value of data-name-1.

6. In Formats 3 and 4, the condition may be any type of condition,
including the CORRESPONDING relation condition.

7. In Format 3:

If the UNTIL option is used, successive execution of procedures
occurs until condition-1 is satisfied.

The condition-1 is tested prior to execution of the PERFORM
statement. I f the condi t ion is not t rue, the specified
procedures are performed until the condition is true. Control
is then passed to the next statement after PERFORM. If the
condition is true prior to execution of the PERFORM statement,
procedure-name-1 is not executed and control passes to the next
statement after PERFORM.

In Format 4:

If one identifier is varied, data-name-2 is set to the current
value of data-name-3, arithmetic-expression-1, index-name-1, or
literal-1 at the point of initial execution of the PERFORM
statement. If the condition is true, the procedures are not
executed and control passes to the next statement after
PERFORM. If the condition is false, procedure-name-1 through
procedure-name-2 are executed once.

The value of data-name-2 is then incremented or decremented by
the va lue i n da ta -name-4 , a r i t hme t i c -exp ress ion -2 , o r
literal-2. The condition is reevaluated. The cycle continues
unti l the condit ion is true, at which point control is
transferred to the next statement following the PERFORM
statement. See Figure 8-5.

First Edition

DOC5039-184

ENTRANCE

SET DATA-NAME-1
EQUAL TO

CURRENT FROM VALUE

TEST
CONDITION-1

TRUE

FALSE

EXECUTE
PROCEDURE-NAME-1

THROUGH
PROCEDURE-NAME-2

INCREMENT OR
DECREMENT

AUGMENT
DATA-NAME-1 WITH
CURRENT BY VALUE

Logic of PERFORM Statement (One Identifier Varied)
Figure 8-5

First Edition

THE PROCEDURE DIVISION

At the termination of the PERFORM statement, data-name-2 or
index-name-1 has a value that differs from the last used
setting by the value of data-name-4, arithmetic-expression-2,
o r l i te ra l -2 . I f the cond i t ion was t rue be fo re in i t ia l
execution of the PERFORM statement, data-name-2 or index-name-1
con ta ins the cu r ren t va lue o f da ta -name-3 , l i t e ra l -1 ,
arithmetic-expression-1, or index-name-2.

When two identifiers are varied, data-name-2 and data-name-5
are set to the current value of data-name-3 and data-name-6,
respectively. Condition-1 is then evaluated. If it is true,
control is transferred to the next statement; i f false,
c o n d i t i o n - 2 i s e v a l u a t e d . I f c o n d i t i o n - 2 i s f a l s e ,
procedure-name-1 through procedure-name-2 are executed once,
t h e n d a t a - n a m e - 5 i s a u g m e n t e d b y d a t a - n a m e - 7 ,
ar i thmet ic -express ion-4 , o r l i te ra l -4 , and cond i t ion-2 is
evaluated again. This cycle of evaluation and augmentation
continues until condition-2 is true. When condition-2 is true,
data-name-5 or index-name-3 is set to the value of literal-3,
data-name-6, index-name-4 (if index-name-3 is being varied), or

Data-name-2 is augmented by data-name-4, l i teral-2, or
arithmetic-expression-2, and condition-1 is reevaluated. The
PERFORM statement is completed if condition-1 is true; if not,
the cycles continue until condition-1 is true.

During the execution of the procedures associated with the
PERFORM statement, any change to the VARYING data-name, the BY
data-name, the AFTER data-name, or the FROM data-name will be
taken into consideration and will affect the operation of the
PERFORM statement.

In Format 4, data-name-5 goes through a complete cycle (FROM,
BY, UNTIL) each time data-name-2 is varied. See Figure 8-6.

At the termination of the PERFORM statement, data-name-5
contains the current value of data-name-6. Data-name-2 has a
value that exceeds the last used setting by one increment or
decrement value, unless condition-1 was true when the PERFORM
statement was entered, in which case data-name-2 contains the
current value of data-name-3.

When three or more identifiers are varied, the mechanism is an
extension of the one for two identifiers. See Figure 8-7.

After the completion of the PERFORM statement, each data item
varied by an AFTER phrase contains the current value of the
data-name in the associated FROM phrase. Data-name-2 has a
value that exceeds its last used setting by one increment or
decrement value, unless condition-1 is true when the PERFORM
statement is entered, in which case data-name-2 contains the
current value of data-name-3.

First Edit ion

DOC5039-184

An example for a Format-4 PERFORM statement is shown below:

START-PARA.
PERFORM INT-PARA

VARYING TNDX1 FROM 1 BY 1
UNTIL TNDX1 > 2

AFTER INDX2 FROM 1 BY 1
UNTIL INDX2 > 12

AFTER INDX3 FROM 1 BY 1
UNTIL INDX3 > 7.

INT-PARA.
MOVE ZEROS TO DEPT-TOTAL(INDX1, INDX2, TNDX3)

If a sequence of statements referred to by a PERFORM statement
includes another PERFORM statement, the sequence of procedures
associated with the included PERFORM must itself either be
totally included in, or totally excluded from, the logical
sequence encompassed by the first PERFORM. Thus, an active
PERFORM statement, whose execution point begins within the
range of another active PERFORM statement, must not allow
control to pass to the exit of the other active PERFORM
statement; furthermore, two or more such active PERFORM
statements may not have a common exit. See Figure 8-8.

First Edition

THE PROCEDURE DIVISION

ENTRANCE

SET
DATA-NAME-1 AND
DATA-NAME-4 TO

CURRENT FROM VALUES

0—-..
^ ^ T E S T ^ \ TRUE — f E>-)N . C O N D I T I O N - 1 ^ s >

TRUE

FALSE
\\

^ ^ T E S T ^ \\ C O N D I I I U N - 2 ^ ^

FALSE
I ▼ ▼

EXECUTE
PROCEDURE-NAME-1

THROUGH
PROCEDURE-NAME-2

SET
DATA-NAME-4

TO ITS CURRENT
FROM VALUE

v <

AUGMENT
DATA-NAME-4

WITH ITS CURRENT
BY VALUE

AUGMENT
DATA-NAME-1

WITH ITS CURRENT
BY VALUE

0
Logic of PERFORM Statement (Two Identifiers Varied)

Figure 8-6

First Edition

DOC5039-184

ENTRANCE

SET
DATA-NAME-1 AND
DATA-NAME-4 TO

CURRENT FROM VALUES

^ T E S T
CONDITION-1

TEST
CONDITION-2

' T E S T ^
CONDITION-3

EXECUTE
PROCEDURE-NAME-1

THROUGH
PROCEDURE-NAME-2

SET
DATA-NAME-7

TO ITS CURRENT
FROM VALUE

SET
DATA-NAME-4

TO ITS CURRENT
FROM VALUE

AUGMENT
DATA-NAME-7

WITH ITS CURRENT
BY VALUE

AUGMENT
DATA-NAME-4

WITH ITS CURRENT
BY VALUE

AUGMENT
DATA-NAME-1

WITH ITS CURRENT
BY VALUE

Logic of PERFORM Statement (Three Identifiers Varied)
Figure 8-7

First Edition

THE PROCEDURE DIVISION

Function

The READ statement makes available a record from a file.

Format 1

READ file-name RECORD [INTO data-name-1]

[; AT END imperative-statement]

Format 2

Format 3

READ file-name RECORD HNTO data-name-1]

[; INVALID KEY imperative-statement]

Format 4
READ file-name RECORD [INTO data-name-1]

[; KEY IS data-name]

[; INVALID KEY imperative-statement]

itax Rules

1. Format 1 is used for all sequentially organized files.

2. The NEXT phrase option in Format 2 is used only for indexed and
relative files, in SEQUENTIAL or DYNAMIC access modes, when
records are to be retrieved sequentially.

3. Formats 3 and 4 are used only for indexed and relative files.

4. The KEY IS option is used only for indexed files.

First Edit ion

DOC5039-184

**Note that, in the last example, statement (d) must not be executed
while the first PERFORM statement (x) is active, or program-control
code at m would cause an erroneous return to the statement following

Permissible PERFORM Sequences
Figure 8-8

First Edition

THE PROCEDURE DIVISION

5. The AT END phrase must be specified if no applicable USE procedure
is specified for file-name.

Note

T h i s d i s c u s s i o n o f t h e R E A D s t a t e m e n t i n c l u d e s
sequentially-organized files only. Further detailed discussion
of READ statement formats as they apply to indexed files and
relat ive fi les wi l l be found in Chapters 12 and 13,
respect ive ly.

General Rules for READ with Sequential Files

1. A file must be OPEN for INPUT, EXTEND, or 1-0 when a READ
statement for that file is executed.

2. Execution of the READ statement makes a record available to the
program before execution of any subsequent statement, provided
AT END is not invoked. To do so, it makes use of the current
record pointer, a conceptual entity that points to the next
record to be accessed. The record to be made available by the
READ statement is determined as follows:

• If the current record pointer was positioned by the
execution of the OPEN statement, the record pointed to
by the current record pointer is made available.

• If the current record pointer was positioned by the
execution of a previous READ statement, the current
record pointer is updated to point to the next existing
record in the file and then that record is made
ava i lab le .

3. The execution of the READ statement causes the value of the
FILE STATUS data item, if any, associated with file-name to be
updated. See FILE STATUS under FILE-OONTROL in Chapter 6.

4. When the logical records of a file are described with more than
one record description, these records automatically share the
same storage area; th is is equivalent to an impl ic i t
redefinition of the area. The contents of any data items that
lie beyond the range of the current data record are undefined
at the completion of the execution of the READ statement.

First Edit ion

DOC5039-184

If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by data-name-1,
according to the rules specified for the MOVE statement without
the CORRESPONDING phrase. The implied MOVE does not occur if
the execution of the READ statement was unsuccessful. Any
subscripting or indexing associated with data-name-1 is
evaluated after the record has been read and immediately before
it is moved to the data item. Data-name-1 must not be defined
in the FD entry for the file.

When the INTO phrase is used, the
available in both the input record
associated with data-name-1.

record being read is
area and the data area

7. If, at the time of execution of a READ statement, the position
of the current record pointer for that file is undefined, the
execution of that READ statement is unsuccessful.

8. If, at the time of the execution of a READ statement, no next
logical record exists in the file, the AT END condition occurs,
and the execution of the READ is unsuccessful.

9. When the AT END condition is recognized, the following actions
are taken in the specified order:

A value is placed into the FILE STATUS data item, if
specified for th is fi le, to indicate an AT END
condi t ion.

• If the AT END phrase is specified in the statement
causing the condition, control is transferred to the
imperative-statement. Any USE procedure specified for
this file is not executed.

j If the AT END phrase is not specified, then a USE
procedure must be specified for this file, and that
procedure is executed.

When the AT END condition occurs, execution of the input-output
statement that caused the condition is unsuccessful.

10. Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

11. When the AT END condition has been recognized, a READ statement
for that file must not be executed without first executing a
successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

12. Prime extension: for sequential disk files containing packed
or binary data, the user should specify UNOOMPRESSED in th- —

First Edition

THE PROCEDURE DIVISION

READY TRACE — PRIME EXTENSION

c t i o n

e READY TRACE statement enables the display of trace information to* user terminal.

READY TRACE.

ral Rules

After a READY TRACE statement is executed, each time a
paragraph or section in the PROCEDURE division is encountered,
that paragraph or section name is output to the terminal to
provide debugging information. The format printed is:

trace:
section-name

paragraph-name

2. READY TRACE must not be used before the first paragraph-name in
the PROCEDURE division.

3. The display of trace information can be terminated with
execution of the RESET TRACE statement.

Example

i the sample program at the end of this chapter is run with READY
CE inserted at the start of the PROCEDURE division as shown, the

actual flow of program execution is displayed. Output might be:

OK, SEG OLDCASH
trace: 010-GET-JOBINFO
ENTER MONTH (ALPHA)
JUNE, 1982
ENTER JOB CODE
25
trace: 020-NEW-DETAIL-PAGE
trace: 150-NEW-PAGE
trace: 150-NEW-PAGE-EXIT
trace: 030-PROCESS-DETAIL
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 050-DEPT-TOTALS
lcKF@Sft 035-READ-AND-PRINT

First Edit ion

DOC5039-184

trace: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 040-READ-AND-PRINT
trace: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 060-REJECTS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 060-REJECTS
trace: 03 5-READ-AND-PRINT
trace: 040-EDIT
trace: 060-REJECTS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 060-REJECTS
trace: 070-TOTALS
trace: 150-NEW-PAGE
trace: 150-NEW-PAGE-EXTT
trace: 080-P.ALANCE-TOTALS
trace: 150-NEW-PAGE
trace: 150-NEW-PAGE-EXIT
trace: 090-PROCESS-TAPE
IS TAPE OUTPUT DESIRED—EN

NO TAPE

First Edition

THE PROCEDURE DIVISION

RELEASE

Function

The RELEASE statement transfers records to the initial phase of a SORT
operation.

Format

RELEASE record-name [FROM data-name]

itax Rule

A RELEASE statement may be used only within an input procedure
associated with a SORT statement. The SORT statement must name a file
whose SD entry contains the record-name.

For a complete discussion, see Chapter 11, THE SORT-MERGE MODULE.

First Edition

THE PROCEDURE DIVISION

RETURN

Function

The RETURN statement obtains sorted records from the final phase of a
SORT operation.

Format

RETURN file-name RECORD f INTO data-name]

; AT END imperative-statement

tax Rule

A RETURN statement may be used only within an output procedure
associated with a SORT statement for a file-name described by an SD
entry.
For complete information, see Chapter 11, THE SORT-MERGE MODULE.

First Edition

DOC5039-184

REWRITE

Function

The REWRITE statement logically replaces a record existing in a disk
fi l e .

Format 1

REWRITE record-name [FROM data-name]

Format 2

REWRITE record-name [FROM data-name]

[; INVALID KEY imperative-statement]

itax Rules

The recor

2. The record-name is the name of a logical record in the FILE
section and may be qualified.

Note

Th is d i scuss ion o f the REWRITE s ta tement i nc ludes
sequentially-organized files only. See Chapters 12 and 13 for
additional information on indexed files and relative files,
respect ive ly.

General Rules

1. The file containing record-name must be a disk file and must be
open for 1-0 (in all access methods) prior to execution of a
REWRITE statement.

2. The last input-output statement executed for the associated
file prior to the execution of the REWRITE statement must have
been a successfully executed READ statement. REWRITE logically
replaces the record that was accessed by the READ statement.

First Edition

THE PROCEDURE DIVISION

The number of character positions in the record referenced by
record-name must be equal to the number of character positions
in the record being replaced.

Prime extensio looical record released uccessful

5. If the associated file is named in a SAME REOORD AREA clause,
the logical record is also available to the program as a record
of other files appearing in the SAME REOORD AREA clause, as
well as to the file associated with record-name.

6. If the FROM option is used, the information in data-name is
moved to the record area prior to the REWRITE.

7. The current record pointer (the conceptual entity that
determines the next record to be accessed) is not affected by
the execution of a REWRITE statement.

8. The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated.

9. The INVALID KEY option is not used for sequential files.

10. A sequential file used with REWRITE must be either a
COBOL-created file other than a printer file, or any
uncompressed file.

First Edition

DOC5039-184

SEARCH

Function

The SEARCH statement is used to search a table for a table element that
satisfies the specified condition, and to adjust the associated
index-name to indicate that table element.

Format 1

SEARCH data-name-1 I VARYING
data-name-2

index-name-1

[; AT END imperative-statement-1]

; WHEN condition-1
imperative-statement-2

NEXT SENTENCE

; WHEN condition-2
imperative-statement-3

NEXT SENTENCE

Format 2

(f IS EQUAL TO I [data-name-3
data-name-2 \ \ \ l i te ra l -1

; W H E N [i S = J [a r i t h - e x p r - 1

condition-name-1

data-name-4
IS EQUAL TO

condition-name-2

data-name-51
l i tera l -2 \
:i''^i^''^lB>

imperative-statement-2

NEXT SENTENCE

First Edition

THE PROCEDURE DIVISION

1. In both Formats 1 and 2, data-name-1 must not be subscripted or
indexed, but its description must contain an OCCURS clause and
an INDEXED BY clause.

2. If data-name-2 is specified, it must be described as USAGE IS
INDEX, or as a numeric elementary item without any positions to
the right of the assumed decimal point.

3. In Format 1, conditions 1 and 2 can be any condition, including
the CORRESPONDING relation condition.

4. In Format 2, the description of data-name-1 must contain the
KEY IS phrase in its OCCURS clause.

A complete discussion of the SEARCH verb is presented in
Chapter 10, TABLE HANDLING.

First Edition

DOC5039-184

PRIME EXTENSION

c t i o n

www specifies a disk record to be accessed.

rmat

EEK file-name RECORD

neral Rules

. SEEK is treated as documentation only in Prime OOBOL 74. I
included only for compatibility with programs transported
non-Prime systems.

The file-name must
thP DATA division.

[9r£j*B«Tif»i (d&Tt*im2?e™wm EroflBatTO

First Edition

THE PROCEDURE DIVISION

Function

The SET statement establishes reference points for table-handling
operations by setting index-names associated with table elements.

Format 1

index-name-1 [, index-name-2]

data-name-1 [, data-name-2]

C index-name-3"
n data-name-3— 1 integer-1

Format 2
f UP BY 1 f data-name-4

SET index-name-4 [, index-name-5] — \ \ \ integer-2
I DOWN BY J [arith-expr-2

The SET statement is discussed in Chapter 10, TABLE HANDLING,

First Edition

DOC5039-184

uSSs letter n represents the number 1, 2, or 3 written as one word w tSn

ihe number after SKIP causes one, two, or three blank lines t.
.nserted in the program listing, after the line containing SKIP.

following program contains SKIP1 in line 4 and SKIP3 in line 6
source.

Source File: <OPERSY>ANNE.K>NEWCBL>SIZECK.CBL
Compiled on: FRI, SEP 03 1982 at 08:47 by: CBL rev x 06/09/82.09:0'
: 44 .Wed
Options are: LISTING OPTIMIZE U(PPER)CASE

1 I D E N T I F I C AT I O N D I V I S I O N .
2 P R O G R A M - I D . S I Z E C K .
3 A U T H O R . A N N E L A D D .

DATE-COMPILED. 820903.08:47:11.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-OOMPUTER. PRIME.
OBJECT-COMPUTER.
INPUT-OUTPUT SECTION.

OL.
'IONAL DISK-FILE ASSIGN TO PFMS.

sso

First Edition

THE PROCEDURE DIVISION

Function

The SORT statement creates a sort-file by executing input procedures or
by transferring records from another file. It sorts the records in the
sort-file on a set of specified keys, and makes the sorted records
available to output procedures or to an output file.

Format

f ASCENDING 1
SORT file-name-1 ON \ \ KEY data-name-1 [, data-name-2]

I DESCENDING

f ASCENDING]
ON | [KEY data-name-3 [, data-name-4]

DESCENDING

KWH131M:

f THROUGH -I
INPUT PROCEDURE IS section-name-1 I \ \ section-name-2

I I THRU

USING file-name-2 [, file-name-3] •••

I" f THROUGH 1
OUTPUT PROCEDURE IS section-name-3 j \ section-name-4

THRU

GIVING file-name-4

A complete discussion of the SORT statement is presented in
Chapter 11, THE SORT-MERGE MODULE.

First Edition

DOC5039-184

START

Function

The START statement provides a basis for logical positioning within an
indexed or relative file for subsequent sequential or dynamic retrieval
of records.

Format

IS EQUAL TO

CTADTI1. M _, IS GREATER THANSTART file-name KEY < _ — > data-name
IS NOT LESS THAN

k IS NOT <

[; INVALID KEY imperative-statement]

START is discussed in Chapters 12 and 13 on indexed and relative 1-0.

First Edition

THE PROCEDURE DIVISION

Function

The STOP statement is used to terminate or delay execution of the
object program.

Format

tax Rule

The literal must be a numeric unsigned integer, nonnumeric
literal, or any figurative constant without the keyword ALL.

If a STOP RUN statement appears in a consecutive sequence of
imperative statements within a sentence, it should appear as
the last statement in that sequence.

General Rules

STOP RUN terminates execution of a program, returning control
to the operating system.

If STOP RUN is used in a called program, execution halts.
Control is not returned to the calling program.

If STOP literal is specified, the literal is displayed on the
terminal, and execution is suspended. Execution is resumed at
the next executable statement in sequence after the carriage
return is pressed. Presumably, the operator performs a
function suggested by the contents of the literal prior to
resuming program execution.

A CLOSE statement should be executed before a STOP RUN
statement if any files were open in the program.

First Edition

DOC5039-184

STRING

Function

The STRING statement concatenates the partial or complete contents of
two or more data items.

Format

STRING
data-name-1 1 f , data-name-2

literal-1 , literal-2

f data-name-3
DELIMITED BY \ literal-3

I SIZE

data-name-4

literal-4

data-name-5

literal-5

C data-name-6
DELIMITED BY \ literal-6

SIZE

tax Rules

1. Each literal may be any figurative constant (without the
optional word ALL) .

2. All literals must be described as nonnumeric literals. All
data-names, except data-name-8, must be described implicitly or
explicitly as USAGE IS DISPLAY.

3. The operand after INTO, data-name-7, must represent an
elementary alphanumeric data item without editing symbols or
the JUSTIFIED clause.

4. The POINTER operand, data-name-8, must represent an elementary
numeric integer data item of sufficient size to contain a value
equal to the size of data-name-7 + 1. The symbol P may not be
used in the PICTURE character-string of data-name-8.

5. Where data-name-1, data-name-2, or data-name-3 is an elementary
numeric data item, it must be described as an integer without
the symbol P in its PICTURE character-string.

6. Operands of STRING must be less than 32K bytes in length.

First Edition

THE PROCEDURE DIVISION

General Rules

1. All references to data-names 1-3 and literals 1-3 apply equally
to data-names 4-6 and literals 4-6, respectively, and to all
recursions thereof.

2. The items referred to by data-name-1, literal-1, data-name-2,
and literal-2 are the sending items. Data-name-7 represents
the receiving item.

3. The operands of DELIMITING (literal-3, data-name-3) indicate
the character(s) delimiting the move. If the SIZE phrase is
used, the complete sending item is moved. When a figurative
cons tan t i s used as the de l im i te r, i t s tands fo r a
single-character nonnumeric literal.

4 . When a figura t ive constant i s spec ified as l i te ra l -1 ,
l i teral-2, l i teral-3, i t refers to an implicit one-character
data item whose usage is DISPLAY.

5. When the STRING statement is executed, the transfer of data is
governed by the following rules:

i Characters from the sending items are transferred to
da ta -name-7 i n acco rdance w i th t he ru les f o r
alphanumeric to alphanumeric moves, except that no
space-filling is provided.

If the DELIMITED phrase is specified without the SIZE
phrase, the contents of the sending i tems are
transferred to the receiving data item. This occurs in
the sequence specified in the STRING statement,
beginning with the leftmost character and continuing
from left to right until the end of the data item is
reached, o r un t i l the charac te r (s) spec ified by
l i teral-3 or by the contents of data-name-3 are
encountered. The character(s) specified by literal-3 or
by the data item referenced by data-name-3 are not
t rans fe r red .

If the DELIMITED phrase is specified with the SIZE
phrase, the entire contents of literal-1, literal-2, or
data-name-1, data-name-2, are transferred. The transfer
proceeds in the sequence specified in the STRING
statement to data-name-7, until all data has been
transferred or the end of the data item referenced by
data-name-7 has been reached.

6. If the POINTER phrase is specified, the programmer is
responsible for setting the initial value of data-name-8. The
initial value must not be less than 1.

First Edition

DOC5039-184

7. If the POINTER phrase is not specified, the following general
rules apply as if the user had specified data-name-8 with an
initial value of 1.

8. When characters are transferred to the receiving item
(data-name-7), the transfer behaves as though characters were
moved, one at a time, from the sending item to the character
position of data-name-7 designated by the value of data-name-8.
Data-name-8 is increased by one prior to the move of the next
character. The value of data-name-8 is changed during
execution of the STRING statement only by the behavior
specified above.

9. At the end of execution of the STRING statement, only the
portion of data-name-7 that was referenced during the execution
of the STRING statement is changed. All other portions of
data-name-7 will contain data that was present before this
execution of the STRING statement.

10. Data transfer to data-name-7 terminates when the value in
data-name-8 is either less than 1, or exceeds the number of
character positions in data-name-7. Such termination may occur
at any point at or after initialization of the STRING
statement. If termination occurs as a result of such a
condition, the imperative statement in an ON OVERFLOW phrase is
executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions
described in General Rule 10 above are encountered, control is
transferred to the next executable statement.

exceed fi

Example

The following program concatenates two strings to form a file-name.

Source File: <MISCE2>ANNE.F>STRING1
Compiled on: 810303 at: 15:27 by: new COBOL Rev 18.0.5 <Feb 12,
1981>

Options: LISTING OPTIMIZE UCASE

1 I D D I V I S I O N .
2 PROGRAM-ID. USTRING.
3 ENVIRCNMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-OOMPUTER. PRIME-750.
6 OBJECT-OOMPUTER. PRIME-750.

First Edition

THE PROCEDURE DIVISION

DATA DIVISION.
WORKING-STORAGE SECTION.
77 FILE-NUMBER-WS
77 FILE-PREFIX-WS
77 NEWFILENAME-WS
77 POINTER-WS
PROCEDURE DIVISION.
010-STRING.

DISPLAY 'USER NAME:
DISPLAY 'RUN NO: '

PIC X(l) VALUE 'OV
PIC X(8) VALUE '
PIC X(9) VALUE "Fl
PIC 999 VALUE 1.

DISPLAY 'USER NAME: ' ACCEPT FILE-PREFIX-WS.
DISPLAY 'RUN NO: ' ACCEPT FILE-NUMBER-WS.
STRING FILE-PREFIX-WS, FILE-NUMBER-WS DELIMITED

BY ' ' INTO NEWFILENAME-WS
CN OVERFLOW DISPLAY 'FILENAME MAY ONLY BE 8

'CHARACTERS LONG. PLEASE START AGAIN1.
DISPLAY 'OUTPUT FILE WILL BE ' NEWFILENAME-WS.
STOP RUN.

When this program is executed (supposing a runfile named STRING.SEG),
the following screen dialog might take place.

OK, SEG STRING
USER NAME:
ANNE
RUN NO:
1
OUTPUT FILE WILL BE ANNE1
OK,

First Edition

DOC5039-184

SUBTRACT

Function

The SUBTRACT statement subtracts one or more numeric data items from a
specified item and stores the difference.

Format 1

(data-name-1
literal-1
arith-expr-1

, data-name-2
, literal-2

-expr-2

[; ON SIZE ERROR imperative-statement]

Format 2

f data-name-1 1 [", data-name-2 .
SUBTRACT] literal-1 [, literal-2]

[arith-expr-1 I

f data-name-3 1
FROM j literal-3 [GIVING data-name-6 f ROUNDED 1

[arith-expr-3 J

[, data-name-7 [ROUNDED 11 -

[; ON SIZE ERROR imperative-statement]

Format 3

f CORRESPONDING]
S U B T R A C T \ I d a t a - n a m e - 1

I C O R R J

FROM data-name-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

tax Rules

1. Each data-name must refer to a numeric elementary item, except
that data-name-5, data-name-6, and so on (following GIVING) may
be elementary numeric edited items.

First Edition

THE PROCEDURE DIVISION

Each literal must be a numeric literal.

The maximum size of each operand is 18 decimal digits. If all
receiving data items were to be superimposed aligned by their
decimal points, their composite could not exceed 18 decimal
digits in length. This rule is ignored if GIVING is used.

In Format 3, both data-name-1 and data-name-2 must be group
items.

The use of arithmeti
ime extensi

General Rules

The SUBTRACT statement is governed by the rules for the GIVING,
CORRESPONDING, ROUNDED, and SIZE ERROR clauses at the start of
this chapter, by the rules for arithmetic statements and
algebraic signs in Chapter 4, and by the rules for Arithmetic
Statements in the PROCEDURE Division at the beginning of this
chapter.

In Format 1, the effect of the SUBTRACT statement is to sum the
values of all the operands that precede FROM, and then to
subtract that sum from the value of each of the operands
following FROM. The result is stored in each of the operands
following FROM.

In Format 2, all operands preceding FROM are added together,
the result ing sum is subtracted from data-name-3,
arithmetic-expression-3, or literal-3, and the result is stored
in each of the operands following GIVING.

In Format 3, elementary items subordinate to data-name-1 are
subtracted from and stored into the matching elementary items
subordinate to data-name-2.

The SIZE ERROR statement is executed if the result is too large
for its field.

First Edition

DOC5039-184

UNSTRING

Function

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

Format

UNSTRING data-name-1

DELIMITED BY [ALL]
data-name-2

literal-1

data-name-3

literal-2

INTO data-name-4 [, DELIMITER IN data-name-5] [, COUNT IN data-name-6]

[, data-name-7 [, DELIMITER IN data-name-8] [, COUNT IN data-name-9]] -

itax Rules

1. Each literal must be a nonnumeric literal. In addition, each
literal may be any figurative constant without the optional
word ALL. (The ALL phrase option of UNSTRING is not the
figurative constant ALL.)

2. The items represented by data-name-1, data-name-2, data-name-3,
data-name-5, and data-name-8 must be described, implicitly or
explicitly, as alphanumeric.

3. The items represented by data-name-4 and data-name-7 may be
described as either alphabetic (except that the symbol B may
not be used in their picture-strings), alphanumeric, or numeric
(except that the symbol P may not be used in their
picture-strings). They must be described with USAGE IS
DISPLAY.

4 . The i tems represented by da ta-name-6 , da ta -name-9 ,
data-name-10, and data-name-11 must be described as elementary
numeric integer data items (except that the symbol P may not be
used in their picture-strings). No binary items (OOMP-1,
OOMP-2, or OOMP) are allowed for these fields.

First Edition

THE PROCEDURE DIVISION

5. No data-name may name a level-88 entry.

6. The DELIMITER IN phrase and the OOUNT IN phrase may be
specified only if the DELIMITED BY phrase is specified.

7. Operands of UNSTRING may not be longer than 32767 bytes in
length.

General Rules

1 . A l l re fe rences to da ta -name-2 , l i t e ra l -1 , da ta -name-4 ,
data-name-5, and data-name-6 apply equally to data-name-3,
l i t e ra l -2 , da ta -name-7 , da ta -name-8 , and da ta -name-9 ,
respec t i ve ly.

2. Data-name-1 represents the sending area.

3. Data-name-4 represents the receiving area. Data-name-5
represents the receiving area for delimiters.

4. Literal-1 or the data item referenced by data-name-2 specifies
a delimiter.

5. Data-name-6 represents the count of the number of characters
within data-name-1 isolated by the delimiters for the move to
data-name-4. This value does not include a count of the
delimiter character(s).

6. The data item referenced by data-name-10 contains a value that
indicates a relative character position within the area defined
by data-name-1.

7. The data item referenced by data-name-11 is a counter that
records the number of data items acted upon during the
execution of an UNSTRING statement.

8. When a figurative constant is used as the delimiter, it stands
for a single-character nonnumeric literal.

When the ALL phrase is specified, two or more contiguous
occurrences of literal-1 (figurative constant or not), or of
the contents of data-name-2, are treated as only one
occurrence. This occurrence is moved to the receiving data
item (data-name-4) according to the rules for the DELIMITER IN
phrase in General Rule 13 below.

9. When an examination encounters two contiguous delimiters, the
current receiving area is either space or zero filled according
to the description of the receiving area.

First Edition

DOC5039-184

10. The literal-1, or the contents of the data item referenced by
data-name-2, can contain any character in the computer's
character set.

11. Each literal-1 or data-name-2 represents one delimiter. When a
delimiter contains two or more characters, al l of the
characters must be present in contiguous positions of the
sending item and in the order given to be recognized as a
d e l i m i t e r.

12. When two or more delimiters are specified in the DELIMITED BY
phrase, an OR condition exists between them. Each delimiter is
compared to the sending field. If a match occurs, the
character(s) in the sending field is considered to be a single
delimiter. No character (s) in the sending field can be
considered as part of more than one delimiter.

Each delimiter is applied to the sending field in the sequence
specified in the UNSTRING statement.

13. When the UNSTRING statement is initiated, the current receiving
area is the data item referenced by data-name-4. Data is
transferred from data-name-1 to data-name-4 according to the
following rules:

• If the POINTER phrase is specified, the string of
characters referenced by data-name-1 is examined
beginning with the relative character position indicated
by the contents of data-name-10. If the POINTER phrase
is not specified, the string of characters is examined
beginning with the leftmost character position.

• If the DELIMITED BY phrase is specified, the examination
proceeds, left to right, until a delimiter specified by
either literal-1 or data-name-2 is encountered. (See
General Rule 11.) If the DELIMITED BY phrase is not
specified, the number of characters examined is equal to
the size of the receiving area. However, if the sign of
the receiving area is defined as occupying a separate
character position, the number of characters examined is
one less than the size of the current receiving area.

If the end of data-name-1 is encountered before the
delimiting condition is met, the examination terminates
with the last character examined.

• The characters thus examined (excluding any delimiting
characters), are treated as an elementary alphanumeric
data item, and are moved into the current receiving area
according to the rules for the MOVE statement.

First Edition

THE PROCEDURE DIVISION

If the DELIMITER IN phrase is specified, the delimiting
character(s) are treated as an elementary alphanumeric
data item and are moved into data-name-5 according to
the rules for the MOVE statement. If the delimiting
condition is the end of data-name-1, then data-name-5 is
s p a c e - fi l l e d .

If the OOUNT IN phrase is specified, a value equal to
the number of characters thus examined (excluding the
de l im i te r charac te r (s) , i f any) i s moved in to
data-name-6 according to the rules for an elementary
move.

If the DELIMITED BY phrase is specified, the string of
characters is further examined, beginning with the first
character to the r ight o f the del imi ter. I f the
DELIMITED BY phrase is not specified, the string of
characters is further examined, beginning with the
c h a r a c t e r t o t h e r i g h t o f t h e l a s t c h a r a c t e r
t rans fe r red .

After data is transferred to data-name-4, the current
receiving area is data-name-7. The behavior described
in the preceding four paragraphs is repeated until
either all the characters are exhausted in data-name-1,
or until there are no more receiving areas.

14. The initialization of the contents of the data items associated
with the POINTER phrase or the TALLYING phrase is the
responsibility of the user.

15. The contents of data-name-10 will be incremented by one for
each character examined in data-name-1. When the execution of
an UNSTRING statement with a pointer phrase is completed,
data-name-10 will contain a value equal to the initial value,
plus the number of characters examined in data-name-1.

16. When the execution of an UNSTRING statement with a TALLYING
phrase is completed, the contents of data-name-11 will be a
value equal to its initial value, plus the number of data
receiving items acted upon.

17. Either of the fol lowing si tuat ions causes an overflow
cond i t ion :

_- An UNSTRING is initiated, and the value of data-name-10
is less than 1 or greater than the size of data-name-1.

During execution of an UNSTRING statement, all data
receiving areas have been acted upon, and data-name-1
contains characters that have not been examined.

First Edition

DOC5039-184

18. When an overflow condition exists, the UNSTRING operation is
terminated. If an ON OVERFLOW phrase has been specified, the
imperative-statement is executed. If the ON OVERFLOW phrase is
not specified, control is transferred to the next executable
statement.

19. The evaluation of subscripting and indexing for the data-names
is as follows:

• Any subscripting or indexing associated with
data-name-1, data-name-10, or data-name-11 is evaluated
only once, immediately before any data is transferred as
the result of the execution of the UNSTRING statement.

• Any subscripting or indexing associated with data-name-2
through data-name-6 is evaluated immediately before the
transfer of data into the respective data item.

!lgik§

JbWcM>™K6--%mm mW fe@

Example

ID DIVISION.
PROGRAM-ID. INPUT1.
AUTHOR. GJK.
REMARKS. THIS IS A SUBPROGRAM THAT ACCEPTS THREE FIELDS. THE FIRST

FIELD (CALL-INPUT) CONTAINS THE NUMERIC DATA (LEET-JUSTIFIED) THAT
WAS ACCEPTED FROM THE KEYBOARD. THE DATA WILL BE RETURNED TO THE
CALLING PROGRAM IN THE SECOND FIELD (CALL-RECEIVE), RIGHT-
JUSTIFIED IF THE FIRST FIELD IS IN CORRECT FORMAT. OTHERWISE
AN ERROR CODE IS RETURNED IN THE THIRD FIELD (CALL-ERROR-OODE) .

DATA DIVISION.
WORKING-STORAGE SECTION.
01 AMOUNT-BEFORE-UNSTRING PIC X(20) .
01 UNSTRING-FIELDS.

0 5 U N - A M O U N T - 1 P I C 9 (1 6) .
0 5 U N - A M O U N T - 2 P I C X (2) .

01 AMOUNT-ALIGNED REDEFINES UNSTRING-FIELDS PIC 9(16)V99.
0 1 A M O U N T - T E S T P I C X (2 0) .
0 1 I N S - T A L L Y P I C 9 9 .

LINKAGE SECTION.
01 CALL-INPUT
01 CALL-RECEIVE
01 CALL-ERROR-CODE

PIC X(20).
PIC 9(16)V99
PIC 9.

First Edition

THE PROCEDURE DIVISION

PROCEDURE DIVISION USING CALL-INPUT, CALL-RECEIVE, CALL-ERROR-CODE.
050-MAIN.

MOVE ZEROS TO UN-AMOUNT-1, INS-TALLY.
MOVE SPACES TO UN-AMOUNT-2.
PERFORM 100-EDIT-AMOUNT.
IF CALL-ERROR-OODE NOT EQUAL 0 NEXT SENTENCE

ELSE PERFORM 200-PREPARE-FOR-UNSTRING,
PERFORM 250-ALIGN-AMOUNIL-WTTH-UNSrRING,
MOVE AMOUNT-ALIGNED TO CALL-RECEIVE.

EXIT PROGRAM.
100-EDIT-AMOUNT.

IF CALL-INPUT EQUAL SPACES
MOVE 1 TO CALL-ERROR-OODE

ELSE PERFORM 150-IS-AMOUNT-NUMERIC.
150-IS-AMOUNT-NUMERIC.

MOVE CALL-INPUT TO AMOUNT-TEST.
INSPECT AMOUNT-TEST TALLYING INS-TALLY FOR ALL ' .'.
IF INS-TALLY EQUAL 0 MOVE 2 TO CALL-ERROR-OODE

ELSE INSPECT AMOUNT-TEST REPLACING ALL SPACES BY ZEROES,
INSPECT AMOUNT-TEST REPLACING FIRST ' . ' BY ZERO
IF AMOUNT-TEST IS NUMERIC NEXT SENTENCE,

ELSE MOVE 1 TO CALL-ERROR-OODE.
200-PREPARE-FOR-UNSTRING.

INSPECT CALL-INPUT REPLACING ALL SPACES BY ZEROES.
MOVE CALL-INPUT TO AMOUNT^BEEORE-UNSTRING.

250-ALIGN-AMOU^lT-WrrH-UNSTRING.
UNSTRING AMOUNT-BEEORE-UNSTRING DELIMITED BY ' . *

INTO UN-AMOUNT-1, UN-AMOUNT-2.

First Edition

DOC5039-184

Function

The USE statement specifies procedures for input-output error handling.

Format 1
f file-name-1 [, file-name-2]

f E X C E P T I O N] I N P U TUSE AFTER STANDARD \ \ PROCEDURE ON OUTPUT
E R R O R 1 - 0

I EXTEND

r EXCEPTION]
USE AFTER STANDARD \ \PROCEDURE ON

ERROR

file-name-1 [, file-name-2]
INPUT
OUTPUT
l-O

itax Rules

A USE statement, when present, must immediately follow a
section header in the DECLARATIVES section, separated from it
by a period and a space. The remainder of the section must
consist of zero, one, or more paragraphs that define the
procedures to be used.

The USE statement itself is never executed; rather, it defines
the conditions for the execution of the following paragraphs.

The same file-name may appear in more than one USE statement,
in a different specific arrangement of the format. Appearance
of a file-name in a USE statement must not cause the
simultaneous
procedure.

request execution than one

The words EXCEPTION and ERROR are interchangeable.

First Edition

THE PROCEDURE DIVISION

The files impl ic i t ly or expl ic i t ly referenced in a USE
statement need not all have the same organization or access.

Format 1 is for use with sequential files only.

General Rules

The paragraphs introduced by USE are executed (implicitly, by
the perform mechanism) after the standard 1-0 recovery
procedures for the files designated, or after the invalid key
condition arises on a statement lacking the INVALID KEY clause,
or on recognition of end of file when AT END has not been
specified in the input-output statement. They are also invoked
if the program attempts to read a record that has been locked
by another user.

After execution of a USE procedure, control is returned to the
statement following the 1-0 statement whose execution resulted
in invoking the USE procedure.

With a USE procedure, there must not be any reference to any
nondeclarative procedure. Conversely, in the nondeclarative
portion there must not be any reference to procedure-names that
appear in the declarative portion, except that PERFORM
statements may refer to a USE statement or to the procedures
associated with it.

Example

An example of USE in DECLARATIVES sections for disk and tape files is
given in the sample program at the end of this chapter.

First Edition

DOC5039-184

WRITE

Function

The WRITE statement releases a logical record for an output or 1-0
file. It can also be used for vertical positioning of lines within a
logical page.

Format 1

WRITE record-name [FROM data-name-1]

AFTER

BEFORE
ADVANCING j {{

data-name-2

integer
PAGE

LINES

WRITE record-name [FROM data-name-1]

[; INVALID KEY imperative-statement]

itax Rules

1. Format 1 can be used only for sequential files.

2. Format 2 can be used only for relative and indexed files,

4. The record-name is the 01-level record-name of a logical
record, described in a record-description-entry in the FILE
section of the DATA division. It may be qualified.

5. When data-name-2 is used in the ADVANCING phrase, it must be
the name of an elementary integer data item.

6. The integer or the value of the data item referenced by
data-name-2 must be between 0 and 62 inclusive.

First Edition

THE PROCEDURE DIVISION

General Rules

For a detailed discussion of indexed and relative writes, see
Chapters 12 and 13.

For both WRITE statement formats, the associated file must be
open as OUTPUT, l-O, or EXTEND.

eleased by the execution
of the WRITE statement is still available in the record area.

If the associated file is named in a SAME REOORD AREA clause,
the logical record is also available to the program as a record
of other files referenced in the same SAME REOORD AREA clause
as well as to the file associated with record-name.

In Format 1, if the FROM option is used, the information is
moved to the record area prior to the WRITE. If the data being
moved is longer than the receiving field, the data is truncated
to the size of the receiving field. If the receiving field is
longer than the data, the remaining area is filled with spaces.

After execution of the WRITE statement, the information in the
area referenced by data-name-1 is still available.

The current record pointer (the conceptual ent i ty that
determines the next record to be accessed) is unaffected by the
execution of a WRITE statement.

The execution of the WRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated.

The maximum record size for a file is established at the time
the file is created and must not subsequently be changed.

The number of character positions on a disk required to store a
logical record in a file may or may not be equal to the number
of character positions defined by the logical description of
that record in the program.

The execution of the WRITE statement releases a logical record
to the file system.

First Edition

DOC5039-184

10. In Format 1, if the ADVANCING option is used, print control
spacing is indicated. The first position in the record must bereserved as FILLER for the print control character being
generated.

• If the BEFORE option is used, a line is written before
advancing.
If the AFTER option is used first, spacing occurs, and
then the line is written.

• Data-name-2 LINE(s) is the number of spacing lines
required between data lines. The value of data-name-2
may be 0 to 62.

If the ADVANCING option is not used, the default is one line.

11. In Format 1, the significance of the integer is as described in
Table 8-3.

Table 8-3
Carriage Control Integer Values

Integer Carriage Control Actions
0 O v e r p r i n t i n g
1 S i n g l e s p a c i n g
2 D o u b l e s p a c i n g
5 T r i p l e s p a c i n g

4-line spacing
5-line spacing
6-line spacing

PAGE
62-line spacing
Skips to top of new page

12. If PAGE is specified, the record is presented on the logical
page before or after (depending on the phrase used) the device
is repositioned to the next logical page.

If PAGE has no meaning in conjunction with a specific device,
then advancing is provided as if the user had specified BEFORE
or AFTER (depending on the phrase used) ADVANCING 1 LINE.

First Edition

THE PROCEDURE DIVISION

13. When an attempt is made to write beyond the externally defined
boundaries of a sequential file, an exception condition exists
and the contents of the record area are unaffected. The
following action takes place:

The value of the FILE STATUS data item, if any, of the
associated file is set to a value indicating a boundary
v i o l a t i o n .

I f a USE dec lara t ive is exp l ic i t l y o r imp l ic i t l y
specified for the file, that declarative procedure will
then be executed.

If a USE declarative is not explicitly or implicitly
specified for the file, the result is undefined.

8-103 First Edition

DOC5039-184

EXAMPLE

This example forms one program with the examples at the end of Chapters
5, 6, and 7.

PROCEDURE DIVISION.
*
DEp^ARATIVES.
INPUT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON DISK-FILE.
FIRST-PARAGRAPH.

DISPLAY '**** 1-0 ERROR CN ENTRY: ***'.
DISPLAY ENTRY-DETAIL, CLOSE DISK-FILE, PRINT-FILE.
STOP RUN.

TAPE-ERROR SECTION. USE AFTER ERROR PROCEDURE ON TAPE-FILE.
SEOOND-PARAGRAPH.

DISPLAY '**** 1-0 ERROR CN TAPE OUTPUT ***».
CLOSE DISK-FILE, PRINT-FILE. STOP RUN.

END DEOiARATIVES.
*
001-BEGTJSJ.

READY TRACE.
OPEN INPUT DISK-FILE, OUTPUT PRINT-FILE.
PERFORM 010-GET-JOBINFO.
PERFORM 020-NEW-DETAIL-PAGE.
PERFORM 030-PROCESS-DETAIL.
PERFORM 070-TOTALS.
PERFORM 080-BALANCE-TOTALS.
PERFORM 090-PROCESS-TAPE.
CLOSE DISK-FILE, PRINT-FILE.
DISPLAY ' END OF RUN'.
STOP RUN.

*
010-GET-JOBINPO.

DISPLAY 'ENTER MONTH (ALPHA) '. ACCEPT VARIABLE-MONTH.
DISPLAY 'ENTER JOB CODE'. ACCEPT JOB-OODE.
IF NOT O0RRECT-O0DE DISPLAY 'WRONG CODE',

CLOSE DISK-FILE, PRINT-FILE, STOP RUN.
*
020-NEW-DETAIL-PAGE.

MOVE ' DETAIL LIST ' TO VARIABLE-HEADING.
PERFORM 150-NEW-PAGE THRU 150-NEW-PAGE-EXIT.
MOVE SPACES TO PRINT-LINE.
M O V E ' D A T E V E N D O R C H E C K
' ACCOUNT AMOUNT' TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING VARIABLE LINES.
ADD 4 TO LPNEOOUNT.
EJECT

0 30-PROCESS-DETAIL.
READ DISK-FILE AT END MOVE 'Y' TO NO-MORE-RECORDS,

DISPLAY ' INPUT FILE WAS EMPTY' ,
CLOSE PRINT-FILE, DISK-FILE, STOP RUN.

PERFORM 035-READ-AND-PRINT UNTIL NO-MORE-RECORDS = 'Y'.
EXIT.

First Edition

THE PROCEDURE DIVISION

035-READ-AND-PRINT.
MOVE 0 TO ERR-OODE.
PERFORM 040-EDIT.
IF ERR-OODE NOT = 0 PERFORM 060-REJECTS,
ELSE PERFORM 050-DEPT-TOTALS.
MOVE 1 TO VARIABLE.
MOVE CORRESPONDING ENTRY-DETAIL TO PRINT-DETAIL.
MOVE ENTRY-ACCT-NO TO PRINT-ACCT-NO.
MOVE ENTRY-AMOUNT TO PRINT-AMOUNT.
WRITE PRINT-LINE FROM PRINT-DETAIL AFTER ADVANCING

1 LINE.
ADD 1 TO LTNECOUNT.
IF LTNECOUNT > 50 PERFORM 020-NEW-DETAIL-PAGE.

* *
* R E A D A L L S U B S E Q U E N T E N T R I E S . *
* *

READ DISK-FILE AT END MOVE 'Y' TO NO-MORE-RECORDS.
EXIT.

040-EDIT.
* *
* ONLY ONE ERROR IS FLAGGED FOR EACH REJECT *
* *

MOVE 0 TO ERR-OODE.
IF ENTRY-ACCT-NO NOT NUMERIC MOVE 1 TO ERR-OODE.
IF ENTRY-ACCT-NO LESS THAN 100 OR GREATER THAN 449,

MOVE 2 TO ERR-OODE.
IF ENTRY-AMOUNT NOT NUMERIC MOVE 3 TO ERR-OODE.
IF ENTRY-MONTH OF ENTRY-DETAIL NOT NUMERIC MOVE 4 TO

ERR-OODE.
IF ENTRY-CHECK-NO OF ENTRY-DETAIL NOT NUMERIC,

MOVE 7 TO ERR-OODE.

050-DEPT-TOTALS.
* *
* M A K E C R O S S - T O T A L A S C H E C K , *
* F IND HOME-ACCOUNT FOR EACH ACCOUNT NUMBER. *
* ADD ENTRY-AMOUNT TO HOME DEPARTMENT TOTAL . *
* *

ADD ENTRY-AMOUNT TO CROSS-TOTAL.
IF ENTRY-ACCT-NO LESS THAN 200, ADD ENTRY-AMOUNT TO TOTALl,
ELSE IF ENTRY-ACCT-ND LESS THAN 300 AND ENTRY-ACCT-NO >

199, ADD ENTRY-AMOUNT TO TOTAL2,
ELSE IF ENTRY-ACCT-NO LESS THAN 420 AND ENTRY-ACCT-NO

> 300, ADD ENTRY-AMOUNT TO TOTAL3,
ELSE IF ENTRY-ACCT-NO LESS THAN 430 AND

ENTRY-ACCT-NO > 419, ADD ENTRY-AMOUNT TO
TOTAL4,

ELSE IF ENTRY-ACCT-NO LESS THAN 440 AND
ENTRY-ACCT-NO > 429, ADD
ENTRY-AMOUNT TO TOTAL5,

ELSE IF ENTRY-ACCT-NO > 439, ADD
ENTRY-AMOUNT TO TOTAL6.

First Edition

DOC5039-184

060-REJECTS.
* *
* MAKE CROSS-TOTAL FOR REJECTS.
* *

IF ENTRY-AMOUNT NUMERIC, ADD ENTRY-AMOUNT TO REJECT-TOTAL.
MOVE SPACES TO ERROR-LINE.
MOVE * ** ERROR FOLLOWS **' TO MESSAGE.
WRITE ERROR-LINE.
EJECT

070-TOTALS.
MOVE 'TOTALS BY ACCOUNT NUMBER1 TO VARIABLE-HEADING.
PERFORM 150-NEW-PAGE THRU 150-NEW-PAGE-EXIT.
M O V E ' A C C O U N T T O T A L D I S B U R S E M E N T
' ' TO PRINT-LINE.

WRITE PRINT-LINE AFTER ADVANCING VARIABLE LINES.
* *
* PRINT TOTALS FOR EACH HOME ACCOUNT
* *

MOVE '100' TO HOME-NUMBER.
MOVE TOTAL! TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '200' TO HOME-NUMBER.
MOVE TOTAL2 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '410* TO HOME-NUMBER.
MOVE TOTAL3 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '420' TO HOME-NUMBER.
MOVE TOTAL4 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '430' TO HOME-NUMBER.
MOVE TOTAL5 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '440' TO HOME-NUMBER.
MOVE TOTAL6 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE 'REJ' TO HOME-NUMBER.
MOVE REJECT-TOTAL TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
ADD TOTAL1, TOTAL2, TOTAL3, TOTAL4, TOTAL5, TOTAL6,

REJECT-TOTAL GIVING FINAL-TOTAL.
MOVE 'FINAL TOTAL ' TO HOME-NUMBER.
MOVE FINAL-TOTAL TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 2.

0 80-BALANCE-TOTALS.
MOVE ' BALANCE RUN ' TO VARIABLE-HEADING.
PERFORM 150-NEW-PAGE THRU 150-NEW-PAGE-EXIT.

* *
* GOOD ITEMS AND REJECTS ARE ADDED FOR GRAND-TOTAL, WHICH
* COMPARED WITH THE FINAL TOTAL (OBTAINED BY ADDING ACCOUNT
* TOTALS AND REJECT TOTAL) .
* *

MOVE GOOD ITEMS REJECT TOTAL
GRAND-TOTAL TO PRINT-LINE.

First Edition

THE PROCEDURE DIVISION

WRITE PRINT-LINE AFTER ADVANCING VARIABLE LINES.
ADD CROSS-TOTAL, REJECT-TOTAL GIVING GRAND-TOTAL.
MOVE GRAND-TOTAL TO FIELD-DIFF.
MOVE REJECT-TOTAL TO FIELD-REJECT.
MOVE CROSS-TOTAL TO FIELD-TOTAL.
WRITE PRINT-LINE FROM BALANCE-LINE AFTER ADVANCING 1.
IF GRAND-TOTAL NOT EQUAL FINAL-TOTAL,

MOVE '*** TOTALS DO NOT BALANCE **** TO ERROR-LINE,
WRITE ERROR-LINE AFTER ADVANCING 2 LINES.

' E J E C T
0 90-PROCESS-TAPE.

DISPLAY ' IS TAPE OUTPUT DESIRED—ENTER YES OR NO '.
ACCEPT TAPE-CHOICE.
IF TAPE-CHOICE = 'yes' OR

TAPE-CHOICE = 'YES' PERFORM 095-WRrTE-TAPE,
ELSE DISPLAY 'NO TAPE'.

095-WRTTE-TAPE.
OPEN OUTPUT TAPE-FILE.
MOVE 1 TO VARIABLE.
MOVE VARIABLE-MONTH TO TAPE-MONTH.
WRITE TAPE-LINE FROM TAPE-HEADER AFTER ADVANCING 1.
ACCEPT JOB-DATE FROM DATE.
MOVE JOB-DATE TO SAVE-DATE-TAPE.
MOVE '100' TO SAVE-ACCT-TAPE.
MOVE TOTALl TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '200' TO SAVE-TOTAL-TAPE.
MOVE TOTAL2 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '410' TO SAVE-ACCT-TAPE.
MOVE TOTAL3 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '420' TO SAVE-ACCT-TAPE.
MOVE TOTAL4 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '430' TO SAVE-ACCT-TAPE.
MOVE TOTAL5 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '440' TO SAVE-ACCT-TAPE.
MOVE TOTAL6 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
CLOSE TAPE-FILE.
PERFORM 095-VERIFY-TAPE.

095-VERIFY-TAPE.
DISPLAY ' FIRST TAPE REOORD - VERIFICATION ONLY'.
OPEN INPUT TAPE-FILE.
READ TAPE-FILE INTO TAPE-HEADER.
READ TAPE-FILE.
DISPLAY TAPE-LINE.
CLOSE TAPE-FILE.
EXIT.

First Edition

DOC5039-184

150-NEW-PAGE.
MOVE PAGEOOUNT TO HEADING-PAGE.
MOVE 2 TO VARIABLE.
WRITE PRINT-LINE FROM HEADING1 AFTER ADVANCING PAGE.
WRITE PRINT-LINE FROM HEADING2 AFTER ADVANCING

VARIABLE LINES.
WRITE PRINT-LINE FROM HEADING3 AFTER ADVANCING

VARIABLE LINES.
ADD 1 TO PAGEOOUNT.
MOVE SPACES TO PRINT-LINE.
MOVE 8 TO LTNECOUNT.

150-NEW-PAGE-EXIT.

This program, stored as OLDCASH.CBL, may be compiled, loaded, and
executed with the following dialog. (The tape sections are executed in
the example at the end of Chapter 14.) The display caused by READY
TRACE is given with the discussion of that statement above and is
omitted here.

OK, CBL OLDCASH -LIST
[CBL rev XX]
OK, SEG -LOAD
[SBG rev 19.0]
$ LO OLDCASH
$ LI CBLLIB
$ LI
LOAD COMPLETE
$ EXEC

ENTER MONTH (ALPHA)
JUNE, 1982
ENTER JOB CODE
25
IS TAPE OUTPUT DESIRED—ENTER YES OR NO
NO
NO TAPE

END OF RUN
OK,

A sample input file (DISBURSE) is:

408080178
409080178
410080278
411080278
412080378
413090378
C82080778
4500B0778
580080778
681080778

ASHTABULA HDWE
CAIRO CHEMICAL
ST.BOTOLPHSTOWN
DOVER MUTUAL
PARIS AUTO
ROME BOATING
ODESSA SERVICES
ANTIOCH SERVALL
BETHLEHEM TAXI
ATHENS LUMBER

4300035476
4360002746

SUPP4200005108
4100034166
4100015000
4150017982
4100004670
4300002580
RR00009840
18500036BB

First Edition

THE PROCEDURE DIVISION

A sample output file (DISB01) is:

MONTHLY CASH DISBURSEMENTS JOURNAL

FOR JUNE, 1982 PAGE

DETAIL LIST

DATE VENDOR CHECK ACCOUNT
080178 ASHTABULA HDWE 408 430
080178 CAIRO CHEMICAL 409 436
080278 ST.BOTOLPHSTOWN SUPP 410 420
080278 DOVER MUTUAL 411 410
080378 PARIS AUTO 412 410
090378 ROME BOATING 413 415
** ERROR FOLLOWS ** 7
080778 ODESSA SERVICES C82 410
** ERROR FOLLOWS ** 4
0B0778 ANTIOCH SERVALL 450 430
** ERROR FOLLOWS ** 1
080778 BETHLEHEM TAXI 580 RRO
** ERROR FOLLOWS ** 3
080778 ATHENS LUMBER 681 185

AMOUNT
354.76

27.46
51.08

341.66
150.00
179.82

46.70

25.80

98.40

36. BB

MONTHLY CASH DISBURSEMENTS JOURNAL

FOR JUNE, 1982 PAGE

TOTALS BY ACCOUNT NUMBER

ACCOUNT TOTAL DISBURSEMENT
100 00
200 00
410 671.48
420 51.08
430 382.22
440 00
REJ 170.90

FINAL TOTAL 1275.68

MONTHLY CASH DISBURSEMENTS JOURNAL

FOR JUNE, 1982

BALANCE RUN

PAGE 3

GOOD
1104

ITEMS
.78

REJECT TOTAL
170.90

GRAND-TOTAL
1275.68

First Edition

Interprogram
Communication

FUNCTION

Interprogram communication allows one program to communicate with
another. Control may be transferred from one program to another within
a runfile, and both programs may have access to the same data items.

The calling program must have a CALL statement and, if data is to be
transferred, a USING clause in the CALL statement. It may also have an
ENTER statement for documentation. If data is to be transferred, the
called program must have a LINKAGE section for that data, and a USING
clause in its PROCEDURE division header. It may also have an EXIT
PROGRAM or GOBACK statement. If no GOBACK or EXIT PROGRAM is included,
control is transferred back to the calling program after the last
statement of the called program is executed.

The example at the end of this chapter illustrates a Prime extension.
In it, a program passes a nonlevel-01 structure to a called program.
The level number in the LINKAGE section of the called program is 01,
though the level number of the passed parameter is not. The size and
structure of the two operands are the same.

OOBOL programs may call programs written in other Prime languages, if
the programs pass arguments of compatible data types. Table 9-1 at the
end of this chapter summarizes which data types are compatible. For
full information, see the Subroutines Reference Guide for software
Rev. 19 and higher.

First Edit ion

DOC5039-184

LINKAGE SECTION

The LINKAGE section describes data, defined elsewhere
program, that is available to a called program.

Format

LINKAGE SECTION.

level-77-description-entry

record-descri ption-entry

itax Rules

The LINKAGE section in a program is meaningful if, and only if,
the program is to function under the control of a CALL
statement, and the CALL statement in the calling program
contains a USING phrase.

The LINKAGE section describes data made available in memory
from another program module, but which is to be referred to in
both the calling and the called programs.

No space is allocated in a program for data items described in
its LINKAGE section. PROCEDURE division references to such
items are resolved at load time, by equating the references in
the called program to the locations used in the calling
program.

Data items defined in the LINKAGE section of the called program
may be referred to in the PROCEDURE division of that program
only if:

• They are specified as operands of the USING phrase of
the PROCEDURE division header or are subordinate to such
operands.

• The called program is under the control of a CALL
statement with a USING phrase. (See the example at the
close of this chapter.)

Any record-description clause in Chapter 7 may be used to
describe items in the LINKAGE section with the following
exceptions:

• The VALUE clause may be specified only for level-88
items.

First Edition

INTERPROGRAM COMMUNICATION

Each record-name and level-77 name used in the LINKAGE
section must be unique (may not be qualified).

The programmer must ensure proper correspondence between
an argument in a CALL statement and the data-name in a
USING list of a PROCEDURE header for the called program.

Items in the LINKAGE section that bear no hierarchic
relationship to one another are classified as
noncontiguous elementary items, and need not be grouped
into records. They may be defined in separate level-77
entries.

Such entries must include a level-number 77, a
data-name, and a PICTURE clause or the USAGE IS INDEX,
OOMP, OOMP-1, or QOMP-2 clause.

First Edition

DOC5039-184

PROCEDURE DIVISION

Format

PROCEDURE DIVISION f USING data-name-1 [, data-name-2] •••]

Each of the data-name operands is an entry in the LINKAGE section of
the called program. Addresses are passed from an external CALL in
one-to-one correspondence to the operands in the USING list of the
PROCEDURE division header so that data in the calling program may be
manipulated in the called program. Corresponding operands must have
identical definitions in the DATA division. It is the user's
responsibility to assure that the size and structure of each passed
operand are the same as those of the LINKAGE SECTION operand to which
it corresponds. No check for this equivalence is done at execution
time.

The maximum number of operands in a USING statement is listed in
Appendix J.

First Edition

INTERPROGRAM COMMUNICATION

The CALL statement allows one program to communicate with another. It
causes control to be transferred from one object program to another
within a runfile.

Format

CALL literal-1 [USING data-name-1 [, data-name-2] ••]

[; ON OVERFLOW imperative-statement]

itax Rules

1. The CALL statement appears in the calling program.

2. The literal must be a nonnumeric literal, with a
eight characters.

maximum of

The USING phrase is included in the CALL statement only if
there is a USING phrase in the PROCEDURE division header of the
called program. Corresponding USING phrases in the calling and
the called programs must have the same number of operands. The
maximum number of data-names allowed after USING is listed in
Appendix J.

Each operand in the USING phrase must have been defined as a
data item in the FILE section, WORKING-STORAGE section, or
LINKAGE section of the calling program. These data-names may
be qualified or subscripted.

Prime extensions: arguments in a CALL statement may have
vel number. They may be subscripted or qualified.

General Rules

1. The execution of a CALL statement transfers control to the
called program.

2. A program is in its initial state the first time it is called
within a runfile. On al l other entr ies into the cal led
program, the state of the program remains the same as when
control last passed from its EXIT statement back to the calling
program. This includes all data fields and the status and
positioning of all files.

First Edition

DOC5039-184

3. Called programs can contain CALL statements. However, a called
program must not contain a CALL statement that directly or
indirectly calls the calling program.

4. The data-names specified by the USING phrase of the CALL
statement represent those data items in a calling program that
may be referred to in the called program.

The order in which the data-names appear in the USING phrases
of the two programs is critical; correspondence is positional,
not by name. Corresponding operands in the called and calling
programs must have the same number of character positions.
Corresponding data-names refer to a single set of data that is
available to the called and calling programs.

Any index-names in the calling and called programs always refer
to separate indexes.

5. The called program may be written in any language available on
a Prime computer.

The literal-1 must be the program-name given in the PROGRAM-ID
statement of the called program, not the PRIMOS file-name.

First Edition

DOC5039-184

EXIT PROGRAM

Function

The EXIT PROGRAM statement marks the logical end of a called program,

Format

EXIT PROGRAM

tax Rules

1. The EXIT PROGRAM statement must appear in a sentence by itself.

2. The EXIT PROGRAM sentence must be the only sentence in the
paragraph.

General Rules

1. The execution of an EXIT PROGRAM statement in a called program
causes control to be returned to the calling program.

2. An EXIT PROGRAM statement in a program that is not called
functions as an EXIT statement.

r e q u e s t f o r i n t e r a c t i v e fi l e

First Edition

DOC5039-184

LOADING AND EXECUTING MORE THAN ONE PROGRAM

To load a runfile containing interdependent programs, follow the steps
given in Chapter 3, loading all program object files one after another.
The main program must be loaded first. Naming conventions for binary
files and runfiles are explained in Chapter 3. An example is given at
the end of this chapter.

For object files whose names do not end in .BIN, use only the Older
Loading Procedure from Chapter 3:

1. SEG

2. LOAD calling-source-file-name.SEG

3. LOAD calling-object-file-name

4. LOAD called-object-file(s)

5. LI CBLLIB

6. If required, LI VSRTLI or other library names

7. LI

8. EXEC or QUIT

The runfile may subsequently be executed with:

SEG calling-source-file-name

For Rev. 18 and higher, if the object file-name ends in .BIN, use the
following Default Loading steps from Chapter 3, which create a runfile
named pr oaram.SEG:

1. SEG -LOAD

2. LOAD calling source-file-name (minus the .CBL suffix)

3. LO called source-file-name(s) (minus .CBL)

4. LI CBLLIB

5. If required, LI VSRTLI or other library names

6. LI

7. EXEC or QUIT

The runfile may subsequently be executed with:

SBG calling-source-file-name

First Edition

INTERPROGRAM COMMUNICATION

Error Messages

If the SBG utility does not return the message LOAD COMPLETE after the
command LI alone is entered (Step 7 or 6 above), then not all required
subprograms or libraries have been loaded. Enter MAP 3 to list all
unresolved references.

If you attempt to execute a runfile with unresolved references, the
system may return a message such as LINKAGE_FAULT$ or POINTER_FAULT$,
or may appear to run the program.

First Edition

DOC5039-184

EXAMPLE

This example presents two programs. The first, CALLER, exhibits some
values, then calls the second, CALLED, which changes those values.
CALLER then exhibits the changed values. Finally, the example shows
how to load and execute the two programs together,

lent passed between the two programs is defined
[, but level 01 in rar.T.nn

Calling Program

Source File: <OPERSY>ANNE.K>NEWCBL>CALLER.CBL
Compiled on: SAT, SEP 25 1982 at 13:59 by: CBL rev 9 06/09/82.09:07
44 .Wed
Options are: LISTING OPTIMIZE U(PPER)CASE

IDENTIFICATJON DIVISION.
PROGRAM-ID. CALLER.

DATA DIVISION.

WOl
01

3KIN
A l .

s-sn0RACJE

02 A2
02 A3.

03
03
03

03

A4
A5
A6.
04
04
A9

A7
A8

02 A2 PIC X VALUE 'A1.
> 0 2 A 3 .
J 0 3 A 4 P I C X V A L U E ' B ' .

03 A5 PIC X VALUE 'C.
03 A6.

04 A7 PIC X VALUE 'D1.
04 A8 COMP-2 VALUE -31415.9E-4.

• 0 3 A 9 P I C X (5) V A L U E ' O O B O L ' .

PROCEDURE DIVISION.
! E X H I B I T N A M E D A 4 .
1 E X H I B I T N A M E D A 5 .

u E X H I B I T N A M E D A 7 .
EXHIBIT NAMED A8.
EXHIBIT NAMED A9.
CALL 'CALLED* USING A3.

^A EXHIB IT NAMED A4 .
EXHIBIT NAMED A5.
EXHIBIT NAMED A7.
EXHIBIT NAMED A8.
EXHIBIT NAMED A9.
STOP RUN.

DIAGNOSTIC SUMMARY

ERROR 275 SEVERITY 1 LINE 23 OOLUMN 32 [OBSERVATION, SEMANTICS]
The level number of an argument used in a CALL USING statement
should be 01 or 77.

First Edition

INTERPROGRAM COMMUNICATION

Called Program

Source File: <OPERSY>ANNE.K>NEW(BL>CALLED.CBL
Compiled on: SAT, SEP 25 1982 at 13:59 by: CBL rev 9 06/09/82.09:07
44 .Wed
Options are: LISTING OPTIMIZE U(PPER)CASE

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLED.

*
DATA DIVISION.

LINKAGE SECTION.
01 ARG1.

03 A4 PIC X.
03 A5 PIC X.
03 A6.

04 A7 PIC X.
04 A8 COMP-2.

04 A9 PIC X(5)

PROCEDURE DIVISION USING ARG1.
DISPLAY 'ENTERING CALLED1.
MOVE 'X* TO A4.
MOVE *Y' TO A5.
MOVE 'Z' TO A7.
MOVE 0 TO A8.
MOVE 'NWCBL* TO A9.
GOBACK.

Compilation, Loading, and Execution

To run these programs together, follow these steps:

OK, CBL CALLER -L

[CBL rev X.X]

ERROR 275 SEVERITY 1 LINE 23 OOLUMN 32 [OBSERVATION, SEMANTICS]
The level number of an argument used in a CALL USING statement
should be 01 or 77.

[1 OBSERVATION in program: <OPERSY>ANNE.K>NM(SL>CALLER.CBL]

OK, CBL CALLED -L

[CBL rev X.X]
OK, SBG -LOAD
[SBG rev X.X]
$ LOAD CALLER
$ LOAD CALLED
$ LI CBLLIB

First Edition

INTERPROGRAM COMMUNICATION

Table 9-1
Data Type Compatibility in Prime Languages

Generic
Unit/PMA BASIC/VM COBOL 74

FORTRAN
TV

FORTRAN
PASCAL 4 PL1G

1 bit BIT
BIT(l)

1 6 - b i t
Halfword

COMP INTEGER INTEGER*2 INTEGER FIXED BIN
PIC S9 INTEGER*2 L0GICAL*2 Boolean FIXED
t h r u 8 8 (4) L O G I C A L B I N (1 5)

I N T E G E R (t ,
32-b i t INT*4 COMP INTEGER*4 INTEGER*4 Subrange FIXED
W o r d P I C S 9 (5) L O G I C A L B I N (3 1)

t h r u S 9 (9) L 0 G I C A L * 4

6 4 - b i t
Double
Word

COMP
PIC S9(10)
thru S9(18)

3 2 - b i t
FLOAT single
prec is ion

REAL COMP-1 REAL
REALM

REAL
REAL*4

REAL
FLOAT
BINARY

FLOAT
BIN (23)

6 4 - b i t
FLOAT double
prec is ion

REAL*8 COMP-2 REAL*8 REAL*8 FLOAT
BIN(47)

Byte string
(Max. 32767)

INT
DISPLAY(5)
PIC A(n)
PIC 9(n)
PIC X(n)

INTEGER
(5)

CHARACTER
*n

(5)
ARRAY
[l..n] OF
CHAR

(5)
CHAR(n)

Varying (6)
character
s t r i n g

48-b i t s
3 halfwords

Packed
decimal

(6) CHAR(n)
VARYING
(Descriptor)

(8)* * * * ~<type> POINTER

COMP-3 FIXED
DECIMAL

Not available.

First Edition

DOC5039-184

Notes to Table 9-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. In PL1G,
'l'B is true; if this value is stored in a 16-bit integer, the
sign bit is set, giving 100000 octal, or -32768 decimal. False
in PL1G may always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respect ive ly.

Boolean data in Pascal is represented in 16 bits where the sign
bit determines true and false. (A negative sign means true, a
positive sign means false.)

To define a 32-bit integer in Pascal, see the Pascal Reference
Guide for your revision of software.

Where n is a constant expression with the program module. This
is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language in the
Subroutines Reference Guide for Rev. 19 and higher.

This implementation of a pointer in PL1G is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard Pascal
type.

First Edition

Table Handling

DEFINITION

This module defines tables of repeating data items and accesses those
items according to their position in the table. Each item may be
identified through use of a subscript or an index. Tables of up to
eight dimensions may be defined. Ascending or descending keys for a
search may be defined.

Tables are defined with the OCCURS clause in the data-description-
entry. A major use of tables is that their elements are accessed by
position rather than by name. The item that defines a position in a
table is called an index if it is defined with INDEXED BY in the OCCURS
clause, or a subscript if it is defined elsewhere as an integer data
item. In this text, index-name refers to the item defined with INDEXED
BY, and index-data-item refers to the item defined with USAGE IS INDEX.
Both index items have the index format described in the section on DATA
REPRESENTATION AND ALIGNMENT in Chapter 4. The SET verb is the only
means of directly assigning a value to an index-name. (The SEARCH and
PERFORM verbs with the VARYING option can also be used to change the
value of an index-name.) The SEARCH verb is used to search a table
item by item.

Some uses for these elements are discussed in the section STRATEGY at
the end of this chapter.

The maximum allowable table size is listed in Appendix J.

First Edition

DOC5039-184

DATA DIVISION

OCCURS

The OCCURS clause eliminates the need for separate entries for repeated
data i tems. Further, i t suppl ies informat ion required for the
application of subscripts or indexes.

Format 1

OCCURS Integer-2 TIMES

ASCENDING

DESCENDING
KEY IS data-name-2 [, data-name-3]

f INDEXED BY Index-name-1 [, index-name-2] ••]

Format 2

ASCENDING

DESCENDING
KEY IS data-name-2 [, data-name-3]

r INDEXED BY index-name-1 [, index-name-2] —]

itax Rules

1. The OCCURS clause must not be used in a data-description-entry
t h a t :

• Has a 66, 77, or 88 level-number.

• Describes an item whose size is variable (i.e., that has
a subordinate item containing Format 2 of the OCCURS
clause).

The maximum OCCURS specification (integer-1 or integer-2) is
listed in Appendix J. The minimum OCCURS specification
(integer-1) is 1.

The data-name-1 cannot be signed.

First Edition

TABLE HANDLING

The key (data-name-2) must be either the name of the entry
containing the OCCURS clause, or the name of an entry
subordinate to this entry.

Each data-name-3 must be the name of an entry
the group item that is the subject of OCCURS.

subordinate

6. The data-names in the KEY IS phrase must not contain an OCCURS
clause except where data-name-2 is the subject of the entry.

7. There must not be any entry that contains an OCCURS clause
between the data-names in the KEY IS phrase and the subject of
the entry, except where data-name-2 is the subject of the
entry.

8. All data-names used in the OCCURS clause may be qualified;
however, they must not be subscripted or indexed.

9. An INDEXED BY phrase is required if the subject of this entry,
or an entry subordinate to this entry, is to be referenced by
indexing. The index-names identified by this phrase are not
defined elsewhere; not representing data, the index-names
cannot be associated with any data record or be referred to in
a USING phrase.

10. Each index-name must be unique within the program.

11. Where both integer-1 and integer-2 are used, the value of
integer-1 must be less than the value of integer-2.

12. The data description of data-name-1 must describe a positive
integer.

13. A data-description-entry that contains Format 2 of the OCCURS
clause may be followed, within that record description, only by
data description entries that are subordinate to it.

14. In Format 2, the data item defined by data-name-1 must not fall
within the range of the first character position defined by the
data-description-entry containing the OCCURS clause and the
last character position defined by the record-description-entry
containing that OCCURS clause.

15. If data-name-2 is not the subject of the OCCURS entry, then:

• All of the items identified by the data-names in the KEY
IS phrase must be within the group item that is the
subject of this entry.

• Items identified by the data-name in the KEY IS phrase
must not contain an OCCURS clause.

First Edition

DOC5039-184

There must not be any entry that contains an OCCURS
clause between the items identified by the data-names in
the KEY IS phrase and the subject of this entry.

General Rules

The OCCURS clause defines tables or homogeneous sets of
repeated data items. When the OCCURS clause is used, the
data-name which is the subject of the entry, and any items
subordinate to it, must be referred to by subscripting or
indexing except in the SEARCH verb. An example is given with
Rule 6 below.

Except for the OCCURS clause itself, all data description
clauses associated with an item containing an OCCURS clause
apply to each occurrence of the item being described.

In Format 2, the current value of data-name-1 represents the
number of occurrences.

The KEY IS phrase indicates that the repeated data is arranged
in ascending or descending order according to the values
contained in data-name-2, data-name-3, etc. The ascending or
descending order is determined by the rules for the comparison
of operands in Chapter 4. The data-names are listed in their
descending order of significance.

When the INDEXED BY phrase is omitted, subscripting is used to
indicate an individual element within a list, or within a table
of like elements that do not have individual data-names.

When the INDEXED BY phrase is used, an index is assigned to a
table of like elements, with individual items in the table
being identified by index-name. For example, the following
code defines a table MONTH-TAB of 12 items, indexed by INDX.

MONTH-TAB OCCURS 12 TIMES
ASCENDING KEY MONTH-NO
INDEXED BY INDX.
10 MONTH-NO PIC 99.
10 MONTH-VALUE PIC XXX.

This code creates a storage area that may be represented as in
Figure 10-1.

First Edition

TABLE HANDLING

A 12-element Table
Figure 10-1

References to an individual item in the table are made by means
of an index or subscript. Thus, three ways of referring to the
subgroup MONTH-NO of the fourth element of MONTH-TAB, assuming
INDX and DATA-NM both have the value 4, are:

MONTH-NO(4)
MONTH-NO(INDX)
MONTH-NO (DATA-NM)

Subscripting of a table whose definition includes INDEXED BY is
also allowed.

7. The number of occurrences of the subject entry is defined as
follows:

If DEPENDING is not used, the value of integer-2
represents the exact number of occurrences.

If DEPENDING is used, the current value of the data item
referenced by data-name-1 represents the number of
occurrences.

This clause specifies that the subject of this entry has a
variable number of occurrences. The value of integer-2
represents the maximum number of occurrences and the value of
integer-1 represents the minimum number of occurrences. This
does not imply that the length of the subject of the entry is
variable, but that the number of occurrences is variable.

The value of data-name-1 must fall within the range integer-1
through integer-2. Reducing the value of data-name-1 makes the
contents of data items whose occurrence numbers now exceed the
value of data-name-1 unpredictable.

First Edition

DOC5039-184

USAGE

The USAGE clause specifies the format of an index data item in computer
storage.

Format

[USAGE IS] INDEX

itax Rules

1. An elementary item described with the USAGE IS INDEX clause is
called an index data item. An index data item can be
referenced explicitly only in a SEARCH or SET statement, a
relation condition, the USING phrase of a PROCEDURE division
header, or the USING phrase of a CALL statement.

2. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN
ZERO clauses cannot be used to describe group or elementary
items described with the USAGE IS INDEX clause.

General Rules

1. The USAGE clause can be written at any level. If the USAGE
clause is written at a group level, it applies to each
elementary item in the group. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group
to which the item belongs.

2. An index data item contains a value that must correspond to an
occurrence number of a table element. The elementary item
cannot be a conditional variable. If a group item is described
with the USAGE IS INDEX clause, the elementary items in the
group are all index data items. The group itself is not an
index data item and cannot be used in the SEARCH or SET
statement or in a relation condition.

3. An index data item can be part of a group that is referred to
in a MOVE or input-output statement, in which case no
conversion will take place.

4. The format of the index data item is described in the section
DATA REPRESENTATION AND ALIGNMENT in Chapter 4.

5. The maximum value of an index item or index data item is listed
in Appendix J.

First Edition

TABLE HANDLIN3

INDEXED BY

The INDEXED BY phrase appears in the OCCURS clause format. The INDEXED
BY phrase defines the index name to be used with the subject of the
OCCURS clause, and thus allows that subject to be referred to with
indexing. The index-name identified by this phrase is not defined
elsewhere; an index-name is declared not by the usual method of
level-number, name, and data description clauses, but implicitly by
appearance in the "INDEXED BY index-name" phrase of the OCCURS clause.

Format

INDEXED BY index-name-1 [, index-name-2]

General Rules

1. An index-name must be uniquely named.

2. An index-name may be modified only by the SET verb, the SEARCH
verb, and the PERFORM verb.

3. A maximum of eight indexes may be used in an indexed reference.

4. The format of an index-name item is described in the section
DATA REPRESENTATION AND ALIGNMENT in Chapter 4. Its maximum
value is listed in Appendix J.

First Edition

DOC5039-184

PROCEDURE DIVISION

The SET statement permits the manipulation of index-names and index
data items, for table-handling purposes.

Format 1

index-name-1 [, index-name-2]

data-name-1 [, data-name-2] •••

index-name-3
data-name-3
integer-1
arith-expr-1

Format 2

SET index-name-4 [, index-name-5]
UP BY 1 r data-name-4

[\ integer-2
DOWN BY J [arith-expr-2

itax Rules

1. All references to index-name-1, data-name-1, and index-name-4
apply equally to index-name-2, data-name-2, and index-name-5,
respect ive ly.

2. The data-name-4 must be described as an elementary numeric
in teger.

3. The data-names 1 and 3 must name either index data items or
elementary integer items.

4. The integers 1 and 2 may be signed. However, integer-1 must
h a v e a p o s i t i v e v a l u e . A r i t h m e t i c - e x p r e s s i o n - 1 a n d
arithmetic-expression-2 must evaluate to positive integers.

The use of arithmetic expressions in the SET statement is
Prime extension.

General Rules

1. Index-names are related to a specific table and are defined
with the INDEXED BY clause.

First Edition

TABLE HANDLING

2. If index-name-3 is specified, the value of the index before the
execution of the SET statement must not exceed the maximum
number of elements in the associated table.

3. In Format 1, the following action occurs:

j The index-name-1 is set to a value causing it to refer
to the table element that corresponds in occurrence
number to the value of the name after TO. If
data-name-3 is an index data item, or if index-name-3 is
related to the same table as index-name-1, no conversion
takes place.

If data-name-1 is an index data item, it may be set
equal to the contents of either index-name-3 or
data-name-3, where data-name-3 is also an index data
item; no conversion takes place in either case.

If data-name-1 is not an index data item, it may be set
only to an occurrence number which corresponds to the
value of index-name-3. Neither data-name-3 nor
integer-1 can be used in this case.
The process is repeated for index-name-2, data-name-2,
and so on. Each time, the value of index-name-3 or
data-name-3 is used as it was at the beginning of the
execution of the statement.

4. In Format 2, the index name or names following SET are
incremented or decremented by the value after UP or DCWN,
respectively. Each time the value of data-name-4 is used as it
was at the beginning of the execution of the statement.

Table 10-1 represents the validity
combinations in the SET statement.

various operand

Table 10-1
Validity of Operand Combinations in the SET Statement

Sending Item Type of Receiving Item

I n t e g e r D a t a I n d e x D a t a
I t e m I n d e x - n a m e I t e m

Integer arith-expr Va l i d
Integer l i teral
Integer data item
Index-name
Index data item

Va l i d
Va l i d

V a l i d V a l i d V a l i d *
V a l i d * V a l i d *

* No conversion takes place

First Edition

DOC5039-184

SEARCH

The SEARCH statement is used to search a table for an element that
satisfies the specified condition. The associated index-name is
adjusted to indicate that table element.

Format 1

SEARCH data-name-1 I VARYING
data-name-2

index-name-1

[; AT END imperative-statement-1]

; WHEN condition-1
imperative-statement-2

NEXT SENTENCE

; WHEN condition-2
imperative-statement-3

NEXT SENTENCE

Format 2

SEARCH ALL data-name-1 [; AT END imperative-statement-1]

r f IS EQUAL TO ~\ f data-name-3
d a t a - n a m e - 2 \ i I l i t e r a l - 1

; W H E N [I S = J [a r i t h - e x p r - 1

condition-name-1

data-name-4
IS EQUAL TO

condition-name-2

data-name-5
literal-2
arith-expr-2

imperative-statement-2

NEXT SENTENCE

First Edition

TABLE HANDLING

itax Rules

In both Formats 1 and 2, data-name-1 must not be subscripted or
indexed, but its description must contain an OCCURS clause and
an INDEXED BY clause. The description of data-name-1 in Format
2 must also contain the KEY IS phrase in its OCCURS clause, so
it must be an ordered table.

Data-name-2, when specified, must be described as USAGE IS
INDEX, or as a numeric elementary data item without any
positions to the right of the assumed decimal point.
In Format 1 or condition-1, condition-2 may be any condition as
described under OONDITIONAL EXPRESSIONS in Chapter 4.

In Format 2, all referenced condition-names must be defined as
having only a single value. The data-name associated with a
condition-name must appear in the KEY clause of data-name-1.
Each data-name-2 or data-name-4 may be qualified. Further,
each data-name-2 or data-name-4 must be indexed by the first
index-name associated with data-name-1 along with other indexes
or literals as required.

In Format 2, when a data-name in the KEY clause of data-name-1
is referenced, or when a condition-name associated with a
data-name in the KEY clause of data-name-1 is referenced, all
preceding data-names in the KEY clause of data-name-1 or their
associated condition-names must also be referenced.

General Rules

1. The Format-1 SEARCH statement enables a serial
operation, starting with the current index setting.

search

If, at the start of execution of the SEARCH statement,
the index-name associated with data-name-1 contains a
value greater than the highest permissible occurrence
number for data-name-1, the specified imperative-
statement-1 is executed. If the AT END phrase is not
specified, control passes to the next executable
sentence.

If, at the start of execution of the SEARCH statement,
the index-name associated with data-name-1 contains a
va lue not g reater than the h ighest permiss ib le
occurrence number for data-name-1, the SEARCH statement
operates by evaluating the conditions in the order in
which they are written, making use of the index
s e t t i n g s , w h e r e v e r s p e c i fi e d , t o d e t e r m i n e t h e
occurrence of those items to be tested. If none of the
conditions are satisfied, the index-name for data-name-1
is incremented to obtain reference to the next

First Edition

DOC5039-184

occurrence. The process is repeated, using the new
index-name settings. If the new value of the index-name
settings for data-name-1 corresponds to a table element
outside the permissible range of occurrence values, the
search terminates as indicated in the paragraph above.
If one of the conditions is satisfied upon its
evaluation, the search terminates immediately and the
imperative statement associated with that condition is
executed; the index-name remains set at the occurrence
which caused the condition to be satisfied.

Example

The following code assumes the table MONTH-TAB has been
defined as shown in the example with OCCURS. The SEARCH
statement causes a search of MONTH-TAB, changing the
value of INDX until the element whose position is
specified by INDX has the value of MONTH-ACCEPT.

05 MONTH-TAB OCCURS 12 TIMES INDEXED BY INDX
ASCENDING KEY MONTH-NO.
10 MONTH-NO PIC 99.
10 MONTH-VALUE PIC XXX.

FIND-MONTH.
SEARCH MONTH-TAB

WHEN MONTH-NO (INDX) = MONTH-ACCEPT
MOVE MONTH-VALUE (INDX) TO PRINT-MONTH.

In Format 1, if the VARYING phrase is not used, the index-name
that is used for the search operation is the first (or only)
index-name appearing in the INDEXED BY phrase of data-name-1.
Any other index-names for data-name-1 remain unchanged.

In Format 1, if the VARYING index-name-1 phrase is specified,
and if index-name-1 appears in the INDEXED BY phrase of
data-name-1, that index-name is used for this search. If this
is not the case, or if the VARYING data-name-2 phrase is
specified, the first (or only) index-name given in the INDEXED
BY phrase of data-name-1 is used for the search. In addition,
the following operations will occur:

If the VARYING index-name-1 phrase is used, and if
index-name-1 appears in the INDEXED BY phrase of another
table entry, index-name-1 is incremented by the same
amount as, and at the same time as, the index-name
associated with data-name-1 is incremented.

First Edition

TABLE HANDLING

If the VARYING data-name-2 phrase is specified, and
data-name-2 is an index data item, then data-name-2 is
incremented by the same amount as, and at the same time
as, the index associated with data-name-1 is
incremented. If data-name-2 is not an index data item,
data-name-2 is incremented by the value 1 at the same
time as the index-name associated with data-name-1.

In a Format-2 SEARCH statement, the results of the SEARCH ALL
operation are predictable only when:

The data in the table is ordered in the same manner as
described in the ASCEM)ING/DESCENDING KEY clause
associated with the description of data-name-1.

The contents of the key(s) referenced in the WHEN clause
are sufficient to identify a unique table element.

When a Format-2 SEARCH ALL is used, the initial setting of the
index-name for data-name-1 is ignored and its setting is varied
during the search operation. However, at no time is the
index-name set to a value that exceeds the number of elements
in the table, or that is less than the value that corresponds
to the first element of the table. The length of the table is
discussed in the OCCURS clause at the beginning of this
chapter.

If any of the conditions specified in the WHEN clause cannot be
satisfied for any setting of the index within the permitted
range, control is passed to imperative-statement-1 of the AT
END phrase, when specified, or to the next executable sentence.
In either case, the final setting of the index is not
predictable. If all the conditions can be satisfied, the index
indicates an occurrence that allows the conditions to be
satisfied, and control passes to imperative-statement-2.

I f imperat ive-statement-1, imperat ive-statement-2, or
imperative-statement-3 does not terminate with a GO TO
statement, control passes to the next sentence.

In Format 2, the index-name that is used for the search
operation is the first (or only) index-name that appears in the
INDEXED BY clause of data-name-1. Any other index-names for
data-name-1 remain unchanged.

If data-name-1 is a data item subordinate to another data item
containing an OCCURS clause (providing for a two- or
three-dimensional table), an index-name must be associated with
each dimension of the table. This is accomplished through the
INDEXED BY phrase of the OCCURS clause. Only the setting of
the index-name associated with data-name-1 (and data-name-2 or
index-name-1, if present) is modified by the execution of the
SEARCH statement.

First Edition

DOC5039-184

To search an entire two- or three-dimensional table, it is
necessary to execute a SEARCH statement several times. Prior
to each execution of a SEARCH statement, SET statements must be
executed to adjust index-names to appropriate settings.

A flowchart of the Format-1 SEARCH operation containing two
WHEN phrases is presented in Figure 10-2.

First Edition

START

Index setting: > AT END*
highest permissible
occurrence number

imperative-
statement-1

True
condition-1

imperative-
statement-2

False

condition-2
imperative-
statement-3 *

False

Increment
index-name for
data-name-1

(index-name-1
if applicable)

Increment
index-name-1

(for a different
table) or

data-name-2 *

These operations are options included only when specified in the
SEARCH statement.

** Each of these control transfers is to the next sentence unless the
imperative-statement ends with a GO TO statement.

Format-1 SEARCH Flowchart
Figure 10-2

First Edition

DOC5039-184

STRATEGY

Table In i t ia l izat ion

Table initialization, if required, may be achieved either in the
WORKING-STORAGE section or in the PROCEDURE division. The VALUE clause
is not permitted in a data-description-entry specifying an OCCURS or
REDEFINES clause, or in any entry subordinate to one specifying an
OCCURS or REDEFINES clause. The following paragraphs suggest means of
assigning values to table elements.

In the WORKING-STORAGE section of the DATA division, tables can be
initialized in one of two ways:

• If the elements in a table do not need to be individually
initialized, then the VALUE clause may be specified in the
da ta -desc r i p t i on -en t r y con ta in ing the tab le name. The
subordinate data-description-entry should then be given an
OCCURS clause defining the structure of the table.

Examples:

01 A-TABLE
05 B-TABLE

VALUE ZEROS.
PIC 9(3) OCCURS 100 TIMES,

01 STATE-TABLE VALUE 'CALAMAPAVA'.
05 STATE PIC XX OCCURS 5 TIMES.

If the elements in a table need to be individually initialized,
the table must first be defined as a nontable structure with the
desired number of characters. A VALUE clause can be specified
in each element entry of the nontable structure. The structure
can then be redefined as a table with REDEFINES plus a
subordinate entry containing an OCCURS clause.

PIC 99

PIC 99

VALUE 10.
PIC X(22) VALUE 'BOSTON DISTRICT BRANCH'.

VALUE 11.

Example:

01 WAREHOUSE.
05 FILLER PIC 99 VALUE ll
05 NAME PIC X(22) VALUE ']
05 FILLER PIC 99 VALUE li
05 FILLER PIC X(22) VALUE '1
05 FILLER PIC 99 VALUE 1:
05 FILLER PIC X(22) VALUE '!

01 WARE-HOUSE REDEFINES WAREHOUSE.
05 HOUSES OCCURS 3 TIMES.

10 HOUSE-NO PIC 99.
10 HOUSE-NAME PIC X(22).

PIC X(22) VALUE 'NEW YORK CITY BRANCH ' .
VALUE 12.

PIC X(22) VALUE 'HOUSTON HOME OFFICE

First Edition

TABLE HANDLING

In the PROCEDURE division, a table can be initialized with MOVE
statements:

MOVE 'lOBOSTON DISTRICT BRANCH11NEW YORK CITY BRANCH 12HOUST

•ON HOME OFFICE ' TO WAREHOUSE.

Indexing and Subscriptmc

Indexing and subscripting are the two methods of accessing the
individual elements in a table established by the OCCURS clause. An
index is an index-name in an INDEXED BY phrase in an OCCURS clause. A
subscript is an integer or a data-name. To specify a desired table
element, follow the table element's data-name by a parenthesized index
or subscript, such as HOUSE-NO (3). The value of an index or subscript
should represent the occurrence number of the desired element.

Indexing: The general format for direct indexing and relative indexingis:
data-name

condition-name

f index-name-1
(\ literal-1

index-name-2
literal-3

i-expr-3
index-name-3
literal-5

literal-2

arith-expr-2
literal-4

arith-expr-4
literal-6

When a statement that refers to an indexed table element is executed,
the value in the associated index must be neither less than 1, nor
greater than the highest occurrence number of an element in the table.
This restriction applies equally to direct indexing and relative
indexing.

If an arithmetic expression is part of an indexed
evaluate to an integer at the time of reference.

First Edition

DOC5039-184

Direct Indexing: Direct indexing is specified by using an index-name
alone within parentheses, for example, ELEMENT (INDX1).

Consider the following illustration:

01 TABLE-A.
05 ELEMENT OCCURS 6 TIMES INDEXED BY INDX1,

SET TJSJDXl TO 4.
MOVE ELEMENT (INDX1) TO PRINT-FIELD.

ELEMENT(INDXl) in the example above refers to the fourth element of the
table. The MOVE statement moves the contents of the fourth occurrence
of ELEMENT to a field called PRINT-FIELD.

Relative Indexing: Relative indexing uses an arithmetic expression to
compute the location of a table element. Relative indexing may be used
wherever indexing can be used. Using the sample TABLE-A defined in the
example above, the same results could be achieved with relative
indexing. If INDXl has a value of 1, the fourth element of TABLE-A can
be moved to PRINT-FIELD with this statement:

MOVE ELEMENT (INDXl + 3) TO PRINT-FIELD.

In relative indexing, index-name is followed by a space, followed by
one of the operators + or -, followed by another space, followed by an
unsigned integer numeric l i teral or ar i thmet ic expression, al l
delimited by the balanced pair of separators left parenthesis and right
parenthesis.

The occurrence number resulting from relative indexing is determined by
incrementing or decrementing the index by the value of the literal or
arithmetic expression.

Subscripting: Subscripting may be used in lieu of indexing.

The format for subscripting is:

data-name

condition-name
(subscript-1 [, subscript-2 [, subscript-n] —])

First Edition

TABLE HANDLING

A subscript must be delimited by a pair of parentheses following the
table element data-name. When two or more subscripts are required,
they are written in the order of successively less inclusive dimensions
of the data organization, and may be separated by commas. A maximum of
eight levels of subscripting is permitted for any given data item.

A subscript value is changed in the PROCEDURE division via the MOVE,
SEARCH, PERFORM, ADD, SUBTRACT, MULTIPLY, DIVIDE, or COMPUTE verbs.

The subscript can be represented by a positive integer literal, a
data-name, or an integer arithmetic expression. The data-name must be
a numeric elementary item that represents an integer.
3-ta-name as subscript may be qualified or subscripted.

The subscript data-name may be signed, but its value must be positive.
The subscript value indicates the position of the item in a table. The
lowest value permitted is 1, indicating the first position in the
table. Subsequent positions are indicated by sequential values 2, 3,
4, and so on, up to the highest permissible value, which is the maximum
number of occurrences of the item specified in the OCCURS clause.

Three kinds of subscripting can be used on any table and data-name
subscripting.

Literal Subscripting: An integer in parentheses is used. For example,
consider this three-element array:

01 ARRAY.
05 ELEMENT, OCCURS 3, PICTURE S9(4), SIGN TRAILING SEPARATE.

The statement below results in the contents of the second ELEMENT of
ARRAY being moved to the field called PART-NO.

MOVE ELEMENT (2) TO PART-NO.

Data-name Subscripting: An additional data-description-entry is
required to define a data-name to be used as subscript (SUBSCRIPTNO in
this example):

01 ARRAY.
05 ELEMENT, OCCURS 3, PICTURE X(4) .

01 SUBSCRIPTNO
01 PART-NO

PIC 99.
PIC X(4)

MOVE 2 TO SUBSCRIPTNO.
PERFORM 050-TABLERUN.

First Edition

DOC5039-184

050-TABLERUN.
MOVE ELEMENT (SUBSCRIPTNO) TO PART-NO.

cripting with Arithmetic Expressions — Prime Extension: This form
scripting is similar to data-name subscripting except that any

cript may be an arithmetic expression. The arithmetic expression,
'ie time of reference, should evaluate to a positive integer.

Multidimensional Tables

When a table has more than one dimension, the data-name of the desired
item is followed by a list of subscripts, one for each OCCURS clause to
which the item is subordinate.

In such a list, the first subscript applies to the first OCCURS clause
to which the item is subordinate. The second subscript applies to the
next most encompassing level. The third subscript applies to the next
lower level OCCURS clause being accessed, and so on.

The following example presents DATA division entries for a
multidimensional table, TABLE-PLUS.

01 TABLE-PLUS.
05 TYPE OCCURS 10 TIMES.

10 PART-NO PIC X(4) .
10 COLOR PIC X OCCURS 10 TIMES.
10 CONTRCL OCCURS 7 TIMES.

1 5 Q P I C X .
15 C2 PIC XX OCCURS 4 TIMES.

The statement:

MOVE C2(8, 6, 4) TO TEMP.

would move the contents of the fourth occurrence of the field C2, in
the sixth occurrence of the field CONTROL, in the eighth occurrence of
the field TYPE, to a field called TEMP.

Similarly, the statement:
MOVE C2(10, 7, 4) TO TEMP.

would move the contents of the last occurrence of the field C2 to the
field labeled TEMP.

First Edition

TABLE HANDLING

IDENTIFICATION DIVISION.
P R O G R A M - I D . B U D G E T .
A U T H O R . P R I M A T E l .
I N S T A L L A T I O N . P R I M E .
DATE-COMPILED.

* *
REMARKS. THE PROGRAM READS BUDGET LIMITS AND A TRANSACTION FILE.

IF ANY BUDGET LIMIT ENTRIES ARE MISSING, ZERO AMOUNTS ARE
ASSUMED. THE TRANSACTION FILE MUST BE SORTED
BY ACCOUNT WITHIN DEPARTMENT.

THE PROGRAM MAKES A TABLE FOR EACH CATEGORY FOR EACH MONTH,
INCLUDING BUDGET LIMIT AND YEAR-TO-DATE TOTALS SPENT.

THE PROGRAM PRODUCES ONE REPORT. FOR EACH ACCOUNT NUMBER,
IT SEARCHES ALL CATEGORIES, COMPARES EXPENDITURES
WITH BUDGETED LIMITS, AND PRINTS ANY CATEGORIES THAT ARE
OVER THE BUDGETED LIMIT.

* *
ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
CBJECT-OOMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-OONTRCL.

SELECT INPUT-FILE ASSIGN TO PFMS.
SELECT PRINT-FILE ASSIGN TO PRINTER.

* *
DATA DIVISION.
FILE SECTION.
FD INPUT-FILE COMPRESSED,

VALUE OF FILE-ID IS 'BUDGET.DATA*,
LABEL RECORDS ARE STANDARD.

0 1 E N T R Y P I C X (8 0) .

FD PRINT-FILE,
LABEL RECORDS ARE OMITTED.

01 PRINT-LINE PIC X(132).

WORKING-STORAGE SECTION.
7 7 A C C T - S A V E - W S P I C X (3) .
77 EXCESS-OOUNT-WS PIC S999 OOMP-3 VALUE 0 .
7 7 N O - M O R E - I N P U T P I C X V A L U E ' N ' .

* *
♦TWO-DIMENSIONAL TABLE FOR DEPTS AND CATEGORIES, INDEXED. *
* *

01 SELECTED-TABLE.
0 5 D E P T S P I C X (1 1 2 0) V A L U E S P A C E S .
05 DEPTS-SUB REDEFINES DEPTS.

10 THEDEPT OCCURS 8 TIMES, INDEXED BY DEPT-SUB.
13 THEREST OCCURS 10, INDEXED BY CAT-SUB.

15 BUDGETED-AMT PIC 9(5)V99.

First Edition

DOC5039-184

15 AMT-SPENT PIC 9(5)V99.
* *
* ONE-DIMENSIONAL TABLE FOR CATEGORY NAMES TN EXCESS-LINE *
* *
01 NAMES1.

05 NAME-TABLE PIC X(100) VALUE 'AUTO CLOT
'HTNG FOOD INSURANCE MAINTENANCMEDICAL MORTGAGE REC
•REATIONUTILITIES MISC '.
05 CATEGQRY-NAME1 REDEFINES NAME-TABLE.

10 CATEGORY-NAME OCCURS 10 TIMES,
INDEXED BY NAME-SUB PIC X(10) .

* *
* W O R K L I N E S *
* *
*LIMTT-LINE IS BUDGET LIMIT:
01 LIMIT-LINE.

0 5 C O D E - L T P I C X .
0 5 A C C T - L T P I C X (3) .
0 5 C A T - L T P I C 9 9 .
05 DATE-LT.

1 0 M O N T H - L T P I C 9 9 .
1 0 D A Y - Y R P I C 9 (4) .

0 5 A M T - L T P I C 9 (5) V 9 9 .
*DATA-NAME FOR SORTED RECORDS:
01 INPUT1.

0 5 C O D E - I N P I C X .
0 5 A C C T - I N P I C X (3) .
0 5 C A T - I N P I C 9 9 .
05 DATE-IN.

1 0 M O N T H - I N P I C 9 9 .
1 0 D A Y - I N P I C 9 9 .
1 0 Y E A R - I N P I C 9 9 .

0 5 A M O U N T - I N P I C 9 (5) V 9 9 .
0 5 F I L L E R P I C X (6 1) .

PIC X.
PIC X(3).
PIC 99.

PIC 99.
PIC 99.
PIC 99.
PIC 9(5)V99
PIC X(61).

EXCESS-WORK.
05 CATEGORY
05 AMOUNT
05 BUDGET-LIMIT
05 OVER
05 PERCENT

PIC X(10) VALUE SPACES.
PIC 9(10)V99 VALUE 0 COMP-3.
PIC 9(10)V99 VALUE 0 COMP-3.
PIC 9(10)V99 VALUE 0 OOMP-3.
PIC 999V99 VALUE 0 OOMP-3.

* *
* P R I N T L I N E S *
* *
01 HEADING1.

05 CTL1
05 FILLER
05 ACCT-PRINT
05 FILLER

VALUE '

PIC X VALUE '1'.
PIC X(ll) VALUE ' ACCOUNT

PIC X(3) VALUE SPACES.
PIC X(115)

CATEGORIES EXCEEDING BUDGET

First Edition

TABLE HANDLING

1 CATEGORY

HEADING2.
05 CTL2
05 FILLER

VALUE 'CATEGC
■OVER
EXCESS-PRINT.
05 CTRL-EXC
05 CATEGORY
05 AMOUNT
05 FILLER
05 BUDGET-LIMIT
05 FILLER
05 OVER
MESSAGE-LINE

PIC X
PIC X(71)

YTDSPENT

VALUE

BDGTD AMT AMOUNT

0 5 C T R L - E X C P I C X V A L U E * ' .
05 CATEGORY PIC X(10) VALUE SPACES.
0 5 A M O U N T P I C Z (9) 9 . 9 9 .
0 5 F I L L E R P I C X V A L U E S P A C E S .
0 5 B U D G E T- L I M I T P I C Z (9) 9 . 9 9 .
0 5 F I L L E R P I C X X V A L U E S P A C E S .
0 5 O V E R P I C Z (9) 9 . 9 9 .

0 1 M E S S A G E - L I N E P I C X (4 9)
VALUE '1N0 CATEGORIES HAVE AN AMOUNT THAT EXCEEDS BUDGET* .

* *

PROCEDURE DIVISION.

DECLARATIVES.
INPUT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON INPUT-FILE,
FIRST-PARAGRAPH.

DISPLAY '*** 1-0 ERROR ON INPUT FILE: ***'.
STOP RUN.

END DECLARATIVES.

000-MAINLINE.
PERFORM 015-ZERO-TABLES.
PERFORM 017-OPEN.
PERFORM 020-BUDGETED-TOTALS UNTIL CODE-LT = 'T' .
PERFORM 030-PROCESS-TRANS.
CLOSE PRINT-FILE, INPUT-FILE.
STOP RUN.

017-OPEN.
OPEN INPUT INPUT-FILE,

OUTPUT PRINT-FILE.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING PAGE.
READ INPUT-FILE INTO LIMIT-LINE,

AT END DISPLAY 'EMPTY FILE' ,
CLOSE INPUT-FILE, PRINT-FILE
STOP RUN.

015-ZERO-TABLES.
SET DEPT-SUB, CAT-SUB TO 1.
PERFORM 018-ZERO UNTIL DEPT-SUB>8.

018-ZERO.
PERFORM 019-ZERO UNTIL CAT-SUB > 10.
SET DEPT-SUB UP BY 1.

019-ZERO.
MOVE ZEROS TO BUDGETED-AMT (DEPT-SUB, CAT-SUB) .
MOVE ZEROS TO AMT-SPENT(DEPT-SUB, CAT-SUB) .
SET CAT-SUB UP BY 1.

First Edition

DOC5039-184

020-BUTX3ETED-TOTALS.
* *
* READ BUDGET LIMITS INTO TABLE BY MONTHS. *
* USE DEPT-NO AND CAT-NO CN LIMIT-CARD AS INDEXES: *
* *

SET CAT-SUB TO CAT-LT.
IF ACCT-LT = 'ABC SET DEPT-SUB TO 1

ELSE IF ACCT-LT = *DEF' SET DEPT-SUB TO 2
ELSE IF ACCT-LT = 'GHI' SET DEPT-SUB TO 3
ELSE IF ACCT-LT = 'JES' SET DEPT-SUB TO 4
ELSE IF ACCT-LT = 'XYZ' SET DEPT-SUB TO 7
ELSE SET DEPT-SUB TO 8.

MOVE AMT-LT TO BUDGETED-AMT (DEPT-SUB, CAT-SUB).
READ INPUT-FILE INTO LIMIT-LINE,

AT END MOVE 'T' TO OODE-LT,
DISPLAY 'NO TRANS CARDS' .

030-PROCESS-TRANS.
READ INPUT-FILE INTO INPUT1,

AT END DISPLAY 'EMPTY FILE',
CLOSE INPUT-FILE, PRINT-FILE
STOP RUN.

MOVE ACCT-IN TO ACCT-SAVE-WS.
PERFORM 031-PROCESS-REST

UNTIL NO-MORE-INPUT = 'Y'.
*
031-PROCESS-REST.

PERFORM 033-CHECK-FOR-ERRORS.
PERFORM 035-OONTRCL-BREAK-CHECK.
PERFORM 036-MAKE-TABLES.
PERFORM 037-READ-NEXT.

*
033-CHECK-FOR-ERRORS.

* NOT INCLUDED
*
035-OONTRCL-BREAK-CHECK.

IF ACCT-IN NOT EQUAL ACCT-SAVE-WS,
PERFORM 040-NEXT-ACCT.

*
036-MAKE-TABLES.

* *
* SET DEPT-SUB, CAT-SUB FOR TABLE, ADD TO THOSE TOTALS. '
* *

SET CAT-SUB TO CAT-IN.
IF ACCT-IN = 'ABC SET DEPT-SUB TO 1

ELSE IF ACCT-IN = 'DEF' SET DEPT-SUB TO 2
ELSE IF ACCT-IN = 'GHI' SET DEPT-SUB TO 3
ELSE IF ACCT-IN = 'JES' SET DEPT-SUB TO 4
ELSE SET DEPT-SUB TO 8.

ADD AMOUNT-IN TO AMT-SPENT (DEPT-SUB, CAT-SUB) .
*
037-READ-NEXT.

READ INPUT-FILE INTO INPUT!,

First Edition

TABLE HANDLING

AT END MOVE 'Y' TO NO-MORE-INPUT,
PERFORM 040-NEXT-ACCT.

040-NEXT-ACCT.
MOVE ACCT-SAVE-WS TO ACCT-PRINT.
MOVE ACCT-IN TO ACCT-SAVE-WS.
MOVE ZEROS TO EXCESS-OOUNT-WS.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE FROM HEADING1 AFTER ADVANCING 4.
WRITE PRINT-LINE FROM HEADING2 AFTER ADVANCING 2.
SET CAT-SUB TO 1.
PERFORM 041-SEARCH-FOR-EXCESS UNTIL CAT-SUB > 10.
IF EXCESS-OOUNT-WS = 0, PERFORM 046-MESSAGE.
MOVE 0 TO EXCESS-CDUNT-WS.

041-SEARCH-FOR-EXCESS.
* *
* LINEAR SEARCH OF ONE DEPARTMENT BY CATEGORIES: *
* *

IF AMT-SPENT (DEPT-SUB, CAT-SUB) > BUDGETED-AMT
(DEPT-SUB, CAT-SUB),

ADD 1 TO EXCESS-OOUNT-WS,
PERFORM 045-PRINT-EXCESS.

SET CAT-SUB UP BY 1.

045-PRINT-EXCESS.
SET NAME-SUB TO CAT-SUB.
MOVE CATEGORY-NAME (NAME-SUB) TO CATEGORY OF EXCESS-WORK.
MOVE AMT-SPENT (DEPT-SUB, CAT-SUB) TO AMOUNT OF EXCESS-WORK.
MOVE BUDGETED-AMT (DEPT-SUB, CAT-SUB) TO

BUDGET-LIMIT OF EXCESS-WORK.
SUBTRACT BUDGETED-AMT (DEPT-SUB, CAT-SUB)

' FROM AMT-SPENT (DEPT-SUB, CAT-SUB)
GIVING OVER OF EXCESS-WORK.

MOVE OORR EXCESS-WORK TO EXCESS-PRINT.
COMPUTE OVER OF EXCESS-WORK = AMT-SPENT (DEPT-SUB, CAT-SUB)

- BUDGETED-AMT (DEPT-SUB, CAT-SUB).
MOVE OORR EXCESS-WORK TO EXCESS-PRINT.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE FROM EXCESS-PRINT.

046-MESSAGE.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE FROM MESSAGE-LINE.

This program, stored as BUDGET.TABLE.CBL, may be compiled, loaded, and
executed with the following dialog. Sample input and output is given
below.

First Edition

DOC5039-184

OK, CBL BUDGET. TABLE -L

[CBL rev X.X]
OK, SEG -LOAD
[SEG rev X.X]
$ LO BUDGET. TABLE
$ LI CBLLIB
$ LI
LOAD COMPLETE
$ EXEC
OK,

Input File (BUDGET. DATA)

OK, SLIST BUDGET.DATA
BABC010132780300200
BABC020232780346200
BABC030332780020000
BABC040432780000500
BABCO50532780200060
BDEF080532780200000
BGHI080332780098300
BGHI090432780090000
TABC031025789998930
TABC031025780000116
TABC051021780000984
TABC021004780000386
TABC031004780008512
TABC031004780004000
TABC011001780030000
TABC041001780001000
TABC030802780008651
TABC030730780000450
TABC030725780008015
TDEF080720780000430
TGHI090615780025600
TGHI080614780003050
OK,

Output File (PRINT-FILE)

ACCOUNT ABC CATEGORIES EXCEEDING BUDGET

CATEGORY
FOOD
INSURANCE

YTDSPENT
297.44
10.00

BDGTD AMI
200.00

5.00

AMOUNTOVER
97.44
5.00

First Edition

The
Sort-Merge

Module

DEFINITION

The purpose of the sort-merge module is to order one or more data
files, or combine two or more identically ordered files, according to a
set of user-specified keys contained within each record.

To accomplish SORT or MERGE operations, the program must use the SELECT
clause in the ENVIRCNMENT division, the sort file description (SD)
entry in the DATA division, and the SORT or MERGE statement in the
PROCEDURE division.

A program may apply some special processing to each record before or
after a SORT or after a MERGE operation has been completed. The
special processes are in input or output procedures that contain
RELEASE or RETURN statements, respectively, and that are named in the
SORT statement. (MERGE allows only output procedures and the RETURN
statement.)

RELEASE, RETURN, and other statements in input and output procedures
allow processing not provided by the SORT or MERGE statement alone.
They are helpful in creating or selecting certain records to be sorted,
and in processing sorted or merged records in memory.

First Edition

DOC5039-184

S t r a t '

For files containing many records, the use of input and output
procedures will affect runtime performance of the COBCL program. Thus,
if no special operations such as selecting records sent to SORT or
selecting records to be written to the output file are desired, it is
highly advantageous to specify USING and GIVING instead of input and
output procedures in SORT and MERGE statements.

LOADING SORT AND MERGE PROGRAMS

When a runfile is made that includes a SORT or MERGE statement, the
sort library (VSRTLI) must be loaded as shown in Chapter 3. An example
of loading is given at the end of this chapter.

First Edition

THE SORT-MERGE MODULE

ENVIRCNMENT DIVISION

1-0 CONTROL

The I-O-OONTROL paragraph specifies the memory area that is to be
shared by different files.

1-0 CONTROL.

RECORD
;SAME SORT

SORT-MERGE
AREA FOR file-name-1 {, file-name-2}

itax Rules

In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used,
at least one of the file-names must represent a sort or merge
file. Files that do not represent sort or merge files may also
be named in the clause.

More than one SAME clause may be included in a program,
however:

i A file-name must not appear in more than one SAME RECORD
AREA clause.

A file-name that represents a sort or merge file must
not appear in more than one SAME SORT AREA or SAME
SORT-MERGE AREA clause.

If a file-name that does not represent a sort or merge
file appears in a SAME AREA clause and in one or more
SAME SORT AREA or SAME SORT-MERGE AREA clauses, all Of
the files named in the first clause must be named in the
second clause(s).

The files referenced in the SAME SORT AREA, SAME SORT-MERGE
AREA, or SAME REOORD AREA clause need not all have the same
organization or access.

First Edition

DOC5039-184

General Rules

The SAME RECORD AREA or SAME AREA clause specifies that two or
more files are to use the same memory area for processing of
the current logical record. All of the files may be open at
the same time. A logical record in the SAME REOORD AREA is
considered as a logical record of each opened output file whose
file-name appears in this SAME RECORD AREA clause and of the
most recently read input file whose file-name appears in this
SAME REOORD AREA clause. This is equivalent to implicit
redefinition of the area; records are aligned on the leftmost
character position.

If the SAME SORT AREA or SAME SORT-MERGE AREA clause is used,
at least one of the file-names must represent a sort or merge
file. Files that do not represent sort or merge files may also
be named in the clause. This clause specifies that storage is
shared as follows:

• The SAME SORT AREA or SAME SORT-MERGE AREA clause
specifies a memory area that will be made available for
use in sorting or merging each sort or merge file named.
Thus any memory area allocated for the sorting or
merging of a sort or merge file is available for reuse
in sorting or merging any of the other sort or merge
fi l e s .

• In addition, storage areas assigned to files that do not
represent sort or merge files may be allocated as needed
for sorting or merging the sort or merge files named in
the SAME SORT AREA or SAME SORT-MERGE AREA clause.

• Files other than sort or merge files do not share the
same storage area with each other. If the user wishes
these files to share the same storage area with each
other, the program must also include a SAME AREA or SAME
REOORD AREA clause naming these files.

• During the execution of a SORT or MERGE statement that
refers to a sort or merge file named in this clause, any
non-sort-merge files named in the same clause must be
closed.

First Edition

THE SORT-MERGE MODULE

DATA DIVISION

FILE SECTION

An SD file description gives information about the sizes and the names
of the data records associated with the file to be sorted. There are
no label procedures that the user can control, and the rules for
blocking and internal storage are peculiar to the SORT statement.

SORT FILE DESCRIPTION

The sort-merge file description furnishes information concerning the
physical structure, identification, and record names of the file to be
sorted or merged.

Format

SD file-name
COMPRESSED

UNCOMPRESSED

[RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

r RECORD IS 1
; DATA \ \ data-name-1 [, data-name-2]

I RECORDS ARE

{record-description-entry}

itax Rules

1. The level indicator SD identifies the beginning of the
sort-merge file description. An FD level indicator must
precede the file-name of each file providing input or output to
the sort or merge operation.

2. The clauses that follow the file-name are optional, and their
order of appearance is immaterial.

3. One or more record-description-entries must follow the file
description; however, no 1-0 statements may be executed for
this file.

4. The file must be specified in a SELECT clause.

First Edition

DOC5039-184

PROCEDURE DIVISION

MERGE

The MERGE statement combines two or more identically sequenced files on
a set of specified keys, and during the process makes records
available, in merge order, to an output procedure or to an output file.

Format

MERGE file-name-1

f ASCENDING 1
ON \ \ KEY data-name-1 [, data-name-2

DESCENDING

f ASCENDING 1
ON \ \ KEY data-name-3 [, data-name-4]

DESCENDING

USING file-name-2, file-name-3 [, file-name-4]

[THROUGH IOUTPUT PROCEDURE IS section-name-1 \ \ section-name-2
I THRU I

GIVING file-name-5

tax Rules

1. Each file-name-1 must be described in a sort-merge file-
description-entry in the DATA division.

2. Each section-name-1 represents the name of an output procedure.

3. Each file-name-2, file-name-3, file-name-4, and file-name-5
must be described in a file-description-entry, not in a
sort-merge file-description-entry, in the DATA division.

4. The actual size of the logical record (s) described for
file-name-2, file-name-3, file-name-4, and file-name-5 must be
equal to the actual size of the logical record(s) described for
file-name-1. It is the programmer's responsibility to describe
the corresponding records in such a manner as to cause an equal
number of character positions to be allocated.

5. The words THRU and THRCUGH are equivalent.

First Edition

THE SORT-MERGE MODULE

6. Data-names 1, 2, 3, and 4 are KEY data-names and are subject to
the following rules:

• The data items identified by KEY data-names must be
described in records associated with file-name-1.

• KEY data-names may be qualified.

• The data items identified by KEY data-names must not be
variable-length items.

• If file-name-1 has more than one record description,
then the data items identified by KEY data-names need be
described in only one of the record descriptions.

• None of the KEY data-names can be described by an entry
that either contains an OCCURS clause or is subordinate
to an entry that contains an OCCURS clause.

7. File-names must not be repeated within the MERGE statement.

8. MERGE statements may appear anywhere except in the declaratives
portion of the PROCEDURE division or in an input or output
procedure associated with a SORT or MERGE statement.

9. The number of files allowed in the USING or GIVING list is
given in Appendix J. All files in this list must have the same
type, either COMPRESSED or UNOOMPRESSED.

10. The alphabet-name may be NATIVE, STANDARD-1, or EBCDIC. NATIVE
and STANDARD-1 both mean the ASCII standard, which is also the
default. More discussion of these collating sequences is given
with SORT below.

General Rules

1. The MERGE statement will merge all records contained in
file-name-2, file-name-3, and file-name-4. These files are
automatically opened and closed by the merge operation with all
implicit functions performed, such as the execution of any
associated USE procedures. The terminating function for all
files is performed as if a CLOSE statement had been executed
for each file.

Files referenced in a MERGE statement must be closed prior to
execution of the merge and may not be opened by the user until
the merge operation is complete. However, a file named in an
output procedure must have been opened by an explicit OPEN
statement and subsequently written, probably in the output
procedure, and then explicitly CLOSED.

First Edition

DOC5039-184

The data-names following the word KEY are listed from left to
right in the MERGE statement in order of decreasing
significance without regard to how they are divided into KEY
phrases. In the format, data-name-1 is the major key,
data-name-2 is the next most significant key, and so on.

• When the ASCENDING phrase is specified, the merged
sequence will be from the lowest value of the KEY
data-names to the highest value, according to the rules
for comparison of operands in a relation condition in
Chapter 4.

• When the DESCENDING phrase is specified, the merged
sequence will be from the highest value of the KEY
data-names to the lowest value, according to the rules
for comparison of operands in a relation condition in
Chapter 4.

The collating sequence that applies to the comparison of the
nonnumeric key data items specified is determined in the
following order of precedence:

• First, the col lat ing sequence establ ished by the
COLLATING SEQUENCE phrase, if specified, in that MERGE
statement.

• Second, the collating sequence established as the
program collating sequence.

The output procedure must consist of one or more sections that
appear contiguously in a source program and do not form a part
of any other procedure. In order to make merged records
available for processing, the output procedure must include the
execution of at least one RETURN statement. Control must not
be passed to the output procedure except when a related SORT or
MERGE statement is being executed. The output procedure may
consist of any procedures needed to select, modify, or copy the
records that are being returned one at a time in merged order,
from file-name-1. The restrictions on the statements within
the output procedure are as follows:

• The output procedure must not contain any transfers of
control to points outside the output procedure; ALTER,
GO TO, and PERFORM statements in the output procedure
are not permitted to refer to procedure-names outside
it. OOBOL statements are allowed that will cause an
implied transfer of control to declaratives.

• The output procedures must not contain any SORT or MERGE
statements.

First Edition

THE SORT-MERGE MODULE

j The remainder of the PROCEDURE division must not contain
any transfers of control to points within the output
procedures; ALTER, GO TO, and PERFORM statements in the
remainder of the PROCEDURE division are not permitted to
refer to procedure-names within the output procedures.

If an output procedure is specified, control passes to it
during execution of the MERGE statement. The compiler inserts
a return mechanism at the end of the last section in the output
procedure. When control passes the last statement in the
output procedure, the return mechanism provides for termination
of the merge, and then passes control to the next executable
statement after the MERGE statement. Before entering the
output procedure, the merge procedure reaches a point at which
it can select the next record in merged order when requested.
The RETURN statements in the output procedure are the requests
for the next record.

If the GIVING phrase is specified, all the merged records in
file-name-1 are automatically written on file-name-5 as the
implied output procedure for this MERGE statement.

In the case of identical key fields between records from two or
more input files the records are written on file-name-5 or
returned to the output procedure in the order that the
associated input files are specified in the MERGE statement.

The results of the merge operation are predictable only when
the records in the files referenced by file-name-2,
file-name-3, ..., are ordered as described in the ASCENDING or
DESCENDING KEY clause associated with the MERGE statement.

Example

The following program merges two files, MRGFILEl and MRGFILE2, using an
output procedure that sends them to the print file YEARLY. An example
of loading and execution and the sample files follow the program.

IDENTIFICATION DIVISION.
PROGRAM-ID. MERGSAMP.
AUTHOR. W. T. CARBONNEAU.
INSTALLATION. PRIME.
DATE-WRITTEN. 14 APRIL 82.
DATE-COMPILED.
SECURITY. N/A.
REMARKS. TESTING THE MERGE VERB. FILES MUST BE SORTED FIRST!

* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
CBJECT-OOMPUTER. PRIME.
INPUT-OUTPUT SECTION.

First Edition

DOC5039-184

FILE-CONTROL.
SELECT FIRST-HALF ASSIGN TO PFMS.
SELECT SECOND-HALF ASSIGN TO PFMS,
SELECT YEARLY ASSIGN TO PRINTER.
SELECT MERGE-FILE ASSIGN TO PFMS.

k

DATA DIVISION.
FILE SECTION.
FD FIRST-HALF

LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'MRGFIL1'
DATA REOORD IS SALES-HISTORY-1.

01 SALES-HISTORY-1.
0 5 D E P T - N O P I C 9 9 9 .
0 5 P R O D - N O P I C 9 (5) .

FD SECOND-HALF
LABEL RECORDS ARE STANDARD
VALUE OF FILE-3D IS 'MRGFIL2'
DATA RECORD IS SALES-HISTORY-2.

01 SALES-HISTORY-2.
0 5 D E P T - N O P I C 9 9 9 .
0 5 P R O D - N O P I C 9 (5) .

FD YEARLY
LABEL RECORDS ARE STANDARD
DATA REOORD IS CUMULATIVE-SALES.

01 CUMULATIVE-SALES PIC 9(8).
SD MERGE-FILE

DATA REOORD IS MERGE-REOORD.
01 MERGE-REOORD.

05 DEPARTMENT PIC 999.
0 5 P R O D U C T P I C 9 (5) .

WORKING-STORAGE SECTION.
0 1 E N D - O F - D ATA P I C X X X
01 PROOF-LIST.

05 DEPT-NO-REPORT PIC 999.
0 5 F I L L E R - 1 P I C X X X .
05 PROD-NO-REPORT PIC 9(5)

VALUE 'NO

PROCEDURE DIVISION.
MERGE MERGE-FILE ON ASCENDING KEY DEPARTMENT

USING FIRST-HALF, SECOND-HALF
OUTPUT PROCEDURE IS CUTPUT-PROCEDURE.

STOP RUN.
I?

OUTPUT-PROCEDURE SECTION.
CREATE-PROOF-LIST.

OPEN OUTPUT YEARLY.
PERFORM RETURN-DATA.
PERFORM WRTTE-DATA UNTIL END-OF-DATA = 'YES' .
CLOSE YEARLY.
EXIT.

First Edition

THE SORT-MERGE MODULE

RETURN-DATA SECTION.
RETURN MERGE-FILE INTO PROOF-LIST AT END

MOVE 'YES' TO END-OF-DATA.

WRTTE-DATA SECTION.
MOVE SPACES TO FILLER-1.
WRITE CUMULATIVE-SALES FROM PROOF-LIST AFTER ADVANCING 1
PERFORM RETURN-DATA.

First Input File

00123576
00376231
00592862

Second Input File

00263550
00443651
00640166

Compiling, Loading, and Executin

The program may be compiled, loaded, and run with the following dialog.
The error message 247 is displayed only to encourage the programmer to
check that the output procedure was coded correctly.

OK, CBL MERGSAMP

[CBL rev xx]

ERROR 247 SEVERITY 1 LINE 73 COLUMN 19 [OBSERVATION, SEMANTICS]
The section that immediately contains the RETURN statement was not
named as an output procedure associated with a SORT or MERGE
statement. Check that the perform range of the applicable procedure
contains this section.

[1 OBSERVATION in program: <OPERSY>ANNE.K>NEWCBL>MERGSAMP.CBL]

OK, SBG -LOAD
[SEG rev x.x]
$ LO MERGSAMP
$ LI CBLLIB
$ LI VSRTLI

LOAD COMPLETE
$ Q
OK,

First Edition

THE SORT-MERGE MODULE

RELEASE

The RELEASE statement transfers records to the initial phase of a SORT
operation, allowing processing of the record content.

Format

RELEASE record-name [FROM data-name]

tax Rules

1. A RELEASE statement may be specified only within an input
procedure associated with a SORT statement for a file whose SD
entry contains record-name. Input procedures are described
with the SORT statement below.

2. The record-name must be the name of a logical record in the
associated SD entry. The record-name may be qualified.

3. The data-name must be a data-name containing a record read from
an input file (FD entry) . It may be in WORKING-STORAGE.

General Rules

1. The execution of a RELEASE statement causes the record-name to
be released to the initial phase of a SORT operation.

A RELEASE statement must be executed for each record to be sent
to a sort or merge operation.

2. If the FROM phrase is used, the contents of the data-name are
moved to the record-name, then the contents of the record-name
are released to the sort file. Moving takes place according to
the rules for the MOVE statement without the CORRESPONDING
phrase.

3. After the execution of the RELEASE statement, the logical
record is still available as a record of other files referenced
in the SAME AREA clause, as well as to the file associated with
record-name. When control passes from the input procedure, the
file consists of all those records placed in it by the
execution of RELEASE statements.

First Edition

DOC5039-184

If a RELEASE statement releases a record associated with
input file, the input file must have been opened and read.

Example

This input procedure is incorporated in the sample program at the end
of this chapter.

FD IN-FILE, COMPRESSED,
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'BUDGET'.

ENTRY PIC X(80)

FD OUT-SORT,
LABEL RECORDS ARE STANDARD,
REOORD CONTAINS 80 CHARACTERS.

0 1 S O R T O U T P I C X (8 0)

SD SORT-WK,
RECORD CONTAINS 80 CHARACTERS.

01 SORT-REC.
0 5 O O D E - S D P I C X .
0 5 A C C T - S D P I C X (3) .
0 5 C A T - S D P I C X X .
0 5 D A T E - S D P I C 9 (6) .
0 5 F I L L E R P I C X (6 8)

030-INPUT-PROC SECTION.
OPEN INPUT IN-FILE.
READ IN-FILE

AT END DISPLAY 'EMPTY FILE' MOVE 'Y1 TO
NO-MORE-REOORDS.

PERFORM 035-ERROR-CHECK UNTIL NO-MORE-REOORDS
CLOSE IN-FILE
EXIT.

035-ERROR-CHECK SECTION.
IF ACCT-CD NUMERIC,

DISPLAY '**ERROR: ***', DISPLAY ENTRY,
ELSE RELEASE SORT-REC FROM ENTRY.
READ IN-FILE INTO ENTRY,

AT END DISPLAY 'END OF FILE', MOVE 'Y' TO
NO-MORE-REOORDS.

EXIT.

First Edition

THE SORT-MERGE MODULE

RETURN

The RETURN statement obtains sorted records from the final phase of a
sort operation, or merged records during a merge.

Format

RETURN file-name RECORD MNTO data-name]

; AT END imperative-statement

itax Rules

1. The file-name must be described by an SD entry in the DATA
d i v i s i o n .

2. The data-name must be able to contain a record to be written to
an output file.

3. A RETURN statement may be specified only within an output
procedure associated with a SORT or MERGE statement for
file-name. Output procedures are described with the SORT and
MERGE statements.

4. The INTO phrase must not be used if the input file contains
logical records of various sizes.

5. The areas associated with data-name and file-name may be the
same storage area.

General Rules

1. If more than one record description is associated with
file-name, these records automatically share the same storage
area; that is, the area is implicitly redefined. After the
execution of the RETURN statement, any data items which lie
beyond the range of the current record are undefined.

2. When the RETURN statement is executed, the next record from
file-name (in the order of the key) is made available for
processing in the record areas associated with the sort or
merge file.

A RETURN statement must be executed for each record to be
retrieved from the sort or merge operation.

First Edition

DOC5039-184

3. If the INTO phrase is specified, the current record is moved
from the input (file) area to the area specified by data-name
according to the rules for the MOVE statement without the
CORRESPONDING phrase. The implied MOVE does not occur if there
is an AT END condition. Any subscripting or indexing
associated with data-name is evaluated after the record has
been returned and immediately before it is moved to the
data-name.

4. When the INTO phrase is used, the data is available in both the
input record .area and the data area associated with data-name.

5. If no next logical record exists at the execution of a RETURN
statement, the AT END condition occurs. The contents of the
record areas associated with the file are undefined when that
condi t ion occurs. Af ter the execut ion of the impera
tive-statement in the AT END phrase, no RETURN statement may be
executed as part of the current output procedure.

First Edition

THE SORT-MERGE MODULE

SORT

The SORT statement creates a sort-file by executing input procedures or
by transferring records from another file, sorts the records in the
sort-file on a set of specified keys, and makes each record from the
sort-file available, in sorted order, to some output procedures or to
an output file.

Format

f ASCENDING]
SORT file-name-1 ON I \ KEY data-name-1 [, data-name-2]

DESCENDING

f ASCENDING)
ON \ \ KEY data-name-3 [, data-name-4]

DESCENDING

[COLLATING SEQUENCE IS alphabet-name]

f THROUGH]
INPUT PROCEDURE IS section-name-1 j [section-name-2

_ I THRU J

USING file-name-2 [, file-name-3] •••

[fTHROUGH IOUTPUT PROCEDURE IS section-name-3 \ \ section-name-4
THRU

GIVING file-name-4

First Edition

DOC5039-184

»tax Rules

SORT statements may appear anywhere in the PROCEDURE division
except in the DECLARATIVES portion of the PROCEDURE division or
in an input or output procedure associated with a SORT or MERGE
statement.

File-name-1 must be described in an SD entry in the DATA
division. File-names 2, 3, and 4 must be described in FD
en t r i es .

If the USING phrase is specified and file-name-1 contains
variable-length records, the size of the records contained in
file-name-2 must not be less than the smallest record nor
larger than the largest record described for file-name-1. If
file-name-1 contains fixed-length records, the size of the
records contained in file-name-2 must not be larger than the
largest record described for file-name-1.

Data-names 1, 2, and so on (KEY data-names) are subject to the
following rules:

• The data items identified by KEY data-names must be
described in records associated with file-name-1.

• KEY data-names may be qualified.

• KEY data-names may not describe variable-length data
items, nor may they name group items that contain
variable-occurrence data items.

• If file-name-1 has more than one record description,
then the data items identified by KEY data-names need be
described in only one of the record descriptions. In
other words, the same character positions referenced by
a KEY data-name in one record-description-entry are
taken as the KEY in all records of file-name-1.

• The data items identified by KEY data-names may not
contain an OCCURS clause or be subordinate to an item
that contains an OCCURS clause.

The section-name-1 specifies the first section in an input
procedure. The section-name-2, if specified, indentifies the
last section of an input procedure.

The section-names 3 and 4 name an output procedure.

The words THRU and THROUGH are equivalent.

First Edition

THE SORT-MERGE MODULE

7. In the DATA division, file-name-2, file-name-3, and file-name-4
must be described in an FD entry, not in an SD entry.

8. The actual size of the logical records described for file-names
2, 3, and 4 must be equal to the actual size of the records for
file-name-1. Equal numbers of character positions must be
allocated for corresponding records.

9. If the GIVING phrase is specified and file-name-3 contains
variable-length records, the size of the records contained in
file-name-1 must not be less than the smallest record nor
larger than the largest record described for file-name-3. If
file-name-3 contains fixed-length records, the size of the
records contained in file-name-1 must not be larger than the
largest record described for file-name-3.

10. The number of files that may be sorted from the USING list is
given in Appendix J.
ust have the same type, COMPRESSED or UNOOMPRES

11. SORT and MERGE are not supported for tape.

General Rules

1. Files referenced in a SORT statement must be closed prior to
execution of the sort operation and may not be opened by the
user, except through an input or output procedure, until after
the sort is complete.

2. If file-name-1 contains only fixed-length records, any record
in file-name-2 released to file-name-1 is left justified, and
any unused character positions at the right end of the record
are filled with blanks.

3. The data-names following the word KEY are listed in order of
decreasing significance no matter how they are divided into KEY
phrases. For example, data-name-1 is the major key,
data-name-2 is the next most significant key.

> When the ASCENDING phrase is specified, the sorted
sequence will be from the lowest key value to the
highest key value.

When the DESCENDING phrase is specified, the sorted
sequence will be from the highest key value to the
lowest key Value.

• The key values are compared according to the rules for
comparison of operands in a relation condition. (See
CONDITIONAL EXPRESSIONS in Chapter 4.)

First Edition

DOC5039-184

4. If the contents of all KEY data items associated with two or
more data records are equal, then the order of return for the
records is undefined.

5. The files specified in USING and GIVING must have sequential
organizat ion.

6. The collating sequence used in sorting nonnumeric items is
determined in the following order of precedence:

j The sequence established by the COLLATING clause, if
any, in the SORT statement

• The program collating sequence

As an example of the difference that the COLLATING sequence can
make, consider the following file.

OK, SLIST COLLATING.DATA
BABC010132780300200
AABC000123456700000
200C020043298765400

If this file is sorted with COLLATING SEQUENCE IS NATIVE,
COLLATING SEQUENCE IS STANDARD-1, or no COLLATING SEQUENCE
clause, the output file is the following.

OK, SLIST F2.NATIVE
200C020043298765400
AABC000123456700000
BABC010132780300200

With COLLATING SEQUENCE IS EBCDIC, the output file looks like
t h i s .

OK, SLIST F2.EBCDIC
AABC000123456700000
BABC010132780300200
200C020043298765400

Rules for Input Procedures and USING

1. The input procedure must consist of one or more sections that
are written consecutively and do not form a part of any output
procedure. In order to transfer records to file-name-1, the
input procedure must include at least one RELEASE statement.
Control must not be passed to the input procedure except when a
related SORT statement is being executed. An example is given
at the end of this chapter.

First Edition

THE SORT-MERGE MODULE

The input procedure can include any procedures needed to
select, create, or modify records, including a READ for the
input file, which must first be opened. There are three
restrictions on the statements within the input procedure:

The input procedure must not contain any SORT or MERGE
statements.

The input procedure must not contain any explicit
t ransfers of control to points outside the input
procedure; GO TO and PERFORM statements in the input
procedure are not permitted to refer to procedure-names
outside it. OOBQL statements are allowed that will
cause an implied transfer of control to a declarative
sect ion.

The remainder of the PROCEDURE division must not contain
any transfers of control to points inside the input
procedure; GO TO and PERFORM statements in the
remainder of the PROCEDURE division must not refer to
procedure-names within the input procedure.

If an input procedure is specified, control is passed to the
input procedure before file-name-1 is sorted by the SORT
statement. When control passes the last statement in the input
procedure, the records that have been released to file-name-1
are sorted.

If the USING phrase is specified, all the records in the USING
file list (file-name-2 and so on) are automatically transferred
to file-name-1. At the time of execution of the SORT
statement, files in the USING list must not be open. For files
in the USING list, the execution of the SORT statement causes
the following actions to be taken:

The processing of the file is initiated as if an OPEN
statement with the INPUT phrase had been executed.

The file references are passed to the sort routine,
which puts all of the records in a single file. Each
record is obtained as if a READ statement with the NEXT
and the AT END phrase had been executed.

The processing of the file is terminated as if
statement had been executed.

CLOSE

SORT USING is not supported for tape.

First Edition

DOC5039-184

Rules for Output Procedures and GIVING

1. The output procedure must consist of one or more sections that
are written consecutively and do not form a part of any input
procedure. In order to make sorted records available for
processing, the output procedure must include at least one
RETURN statement. Control must not be passed to the output
procedure except when a related SORT statement is being
executed. An example is given with the discussion of MERGE
above.

The output procedure may consist of any procedures needed to
select, modify, or copy the records that are being returned,
one at a time in sorted order, from the sort file. It may
include a WRITE statement for the output file, which must first
be opened. There are three restrictions on the procedural
statements within the output procedure:

• The output procedure must not contain any SORT or MERGE
statements.

• The output procedure must not contain any explicit
transfers of control to points outside it; GO TO and
PERFORM statements in the output procedure are not
permitted to refer to procedure-names outside it. OOBOL
statements are allowed that will cause an implied
transfer of control to declarative sections.

• The remainder of the PROCEDURE division must not contain
any transfers of control to points within the output
procedure; GO TO and PERFORM statements in the
remainder of the PROCEDURE division must not refer to
procedure-names within the output procedure.

2. If an output procedure is specified, control passes to it after
file-name-1 has been sorted by the SORT statement. When
control passes the last statement in the output procedure,
control returns to the next executable statement after the SORT
statement. Before entering the output procedure, the sort
procedure reaches a point at which it can select the next
record in sorted order, when requested. The RETURN statements
in the output procedure are the requests for the next record.

First Edition

THE SORT-MERGE MODULE

If the GIVING phrase is specified, all the sorted records are
automatically written on file-name-4 as the implied output
procedure for the SORT statement. At the time of the execution
of the SORT statement, file-name-4 must not be open. For
file-name-4, the execution of the SORT statement causes the
following actions to be taken:

The processing of the file is initiated. The initiation
is performed as if an OPEN statement with the OUTPUT
phrase had been executed.

The sorted logical records are returned and written onto
the file. The records are written as if a WRITE
statement without any optional phrases had been
executed.

The processing of the file is terminated. The
termination is performed as if a CLOSE statement had
been executed.

If file-name-4 contains only fixed-length records, any record
in file-name-1 containing fewer character positions is padded
with blanks at the right end of the record when the record is
returned to file-name-4.

First Edition

DOC5039-184

EXAMPLE

A source file for sample program SAMPLE. SORT. CBL is presented below.
This example uses a SORT statement with an input procedure. The input
procedure edits records for errors before releasing them to the sort
file SORT-WK.

EXIT.
IDENTIFICATION DIVISION.
P R O G R A M - I D . S R T B U D G T .
A U T H O R . P E G G Y P E C K .
I N S T A L L A T I O N . P R I M E .
DATE-COMPILED.

* *
*

ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
CejECT-OOMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-OONTRQL.

SELECT IN-FILE ASSIGN TO PFMS,
FILE STATUS IS FILE-STAT.

SELECT 0UT-90RT ASSIGN TO PFMS.
SELECT SORT-WK ASSIGN TO PFMS.

* *
*

DATA DIVISION.
FILE SECTION.

*
FD IN-FILE,COMPRESSED,

LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'SEFILE'.

01 ENTRY.
0 5 C O D E - I N P I C X .
0 5 A C C T - I N P I C X (3) .
0 5 F I L L E R P I C X (7 6) .

*
FD OUT-SORT,

LABEL RECORDS ARE STANDARD,
RECORD CONTAINS 80 CHARACTERS.

0 1 S O R T O U T P I C X (8 0) .
*
SD SORT-WK,

REOORD CONTAINS 80 CHARACTERS.
01 SORT-REC.

0 5 O O D E - S D P I C X .
0 5 A C C T - S D P I C X (3) .
0 5 C A T - S D P I C X X .
0 5 D A T E - S D P I C 9 (6) .
0 5 F I L L E R P I C X (6 8) .

WORKING-STORAGE SECTION.
77 FILE-STAT PIC XX.

First Edition

THE SORT-MERGE MODULE

77 NO-MORE-REOORDS PIC X VALUE 'N'.
* *
PROCEDURE DIVISION.

USE AFTER ERROR PROCEDURE ON IN-FILE.
DECLARATIVES.
INPUT-ERROR SECTION. USE AFTER ERROR PROCEDURE

FIRST-PARAGRAPH.
DISPLAY 'ERROR CN INPUT FILE - END OF RUN',

DISPLAY 'FILE STATUS IS ', FILE-STAT,
STOP RUN.

END DECLARATIVES.

MAINLINE SECTION.
000-MAINLINE.

PERFORM 020-SORT-TRANSACTIONS.
STOP RUN.

020-SORT-TRANSACTIONS.
SORT SORT-WK ASCENDING KEY OODE-SD,

DESCENDING KEY ACCT-SD,
ASCENDING KEY CAT-SD,
INPUT PROCEDURE IS 030-INPUT-PROC,
GIVING OUT-SORT.

030-INPUT-PROC SECTION.
OPEN INPUT IN-FILE.
READ IN-FILE INTO ENTRY,

AT END DISPLAY 'EMPTY FILE'
MOVE 'Y' TO NO-MORE-RECORDS.

PERFORM 035-ERROR-CHECK UNTIL NO-MORE-REOORDS
= 'Y'.

CLOSE IN-FILE.

035-ERROR-CHECK SECTION.
IF ACCT-IN NOT NUMERIC,

DISPLAY '**ERROR: ***',
DISPLAY ENTRY,

ELSE RELEASE SORT-REC FROM ENTRY.
READ IN-FILE INTO ENTRY,

AT END DISPLAY 'END OF FILE' MOVE 'Y'
TO NO-MORE-REOORDS.

EXIT.

Below are a sample input file (SEFILE) including one erroneous entry, a
sample dialog for compiling, loading, and running the program, and the
resulting output file (OUT-SORT).

First Edition

DOC5039-184

Input file

1003JOSEPH BLOUGH
3007JOSEPHINE BLOUGH
2002JOSE BLOUGH
4AZ5JOSIP BLOUGH

99 12345678
66 12345678
00 12345678
33 12345678

Compiling, Loading, and Execution

OK, CBL SORT2 -LIST

[CBL rev 9]

ERROR 247 SEVERITY 1 LINE 82 OOLUMN 26 [OBSERVATION, SEMANTICS]
The section that immediately contains the RELEASE statement was not
named as an input procedure associated with a SORT or MERGE
statement. Check that the perform range of the applicable
procedure contains this section.

ERROR 262 SEVERITY 1
File "SORT-WK" was accessed by an INPUT verb but never opened for I
NPUT.

[2 OBSERVATIONS in program: <OPERSY>ANNE.K>NEWCBL>SORT2.CBL]

OK, SEG -LOAD
[SEG rev x.x]
$ LO SORT2
$ LI CBLLIB
$ LI VSRTLI

LOAD COMPLETE
$ EXEC

ERROR: *
4AZ5JOSIP BLOUGH
END OF FILE
OK,

33 12345678

Sorted Output File (OUT-SORT^

1003JOSEPH BLOUGH
2002JOSE BLOUGH
3007JOSEPHTNE BLOUGH

99 12345678
00 12345678
66 12345678

First Edition 11-26

Indexed
Sequential Files

FUNCTION OF THE INDEXED 1-0 MODULE

The Indexed 1-0 module allows random or sequential access of records of
an indexed disk file. Each record in an indexed file is uniquely
identified by the value of one or more keys within that record.

he Prime OOBQL Indexed 1-0 module is intended to be used with ind
lies created with the MIDAS or MIDAS utility. Each OOBOL record ke:
orresponds to a MIDAS index. How to prepare files for OOBOL acces:
th MIDAS is discussed in Appendix E. The subject is presented i"

detail in the section on OOBOL in the MIDAS User's Guid

Caution

Do not use OOBQL with an outdated revision of MIDAS or
MIDASPLUS.

LOADING AND EXECUTING PROGRAMS WITH RELATIVE FILES

Use the SEG command steps in Chapter 3 to load a runfile.
of loading is given at the end of this chapter.

An example

First Edition

DOC5039-184

INDEXED FILE CONCEPTS

Organization

An indexed file is a disk file in which data records may be accessed by
the value of a key. A record description must include one or more data
items used as keys, each of which is associated with a MIDAS index.

The indexes are created in any order on a disk, but also one or more
files of indexes are constructed. All access to these files is thus
done according to the value of the key field related to one of the
file's indexes. More discussion of index files and data files is
presented in the MIDAS User's Guide. A representation of a MIDAS
indexed file together with a file of indexes is presented in Figure
12-1.

MIDAS Indexed Record File and File of Indexed
Figure 12-1

Primary and Secondary Keys

For inserting, updating, and deleting records in a file, each record is
identified solely by the value of a record key. The data item named in
the REOORD KEY clause of a file-control-entry for a file is the primary
record key for that file. Secondary keys may be designated with the
ALTERNATE REOORD KEY clause.

First Edition

INDEXED SEQUENTIAL FILES

A secondary or alternate record key corresponds to
index.

MIDAS secondary

:ile used as an indexea rue in
eated as an indexed file with MIDASPLUS. That is, the file's
ructure is created with MIDASPLUS and then the file is filled with
cords, either with MIDASPLUS or with a OOBOL program. All fields,
ys, secondary keys, and keys allowing duplicates must have been

Access Modes

Three access modes are possible in OOBQL for indexed files. They are
specified in the SELECT clause:

• In sequential access mode, records are accessed in ascending
order of record key values. In the case of duplicate key values
(for secondary keys only), the records are retrieved in the
order in which they were written to the file.

• In random access mode, the sequence in which records are
accessed is controlled by the program. The desired record is
accessed by placing the value of its key in the corresponding
field of the record-description-entry.

• In dynamic access mode, the programmer may change at will from
sequential access to random access for reading the file. Access
mode requirements for each 1-0 statement are discussed in the
section COMMON OPERATIONS CN INDEXED FILES later in this
chapter.

Current Record Pointer

The current record pointer is a conceptual entity used to indicate the
next record to be accessed within a given file. The setting of the
current record pointer is affected only by the OPEN, START, DELETE, and
READ statements.

File Status

A file status check should be coded in the program to determine the
success or failure of an 1-0 operation. The result can be used to
control the next action. If the FILE STATUS clause is specified in a
file-control-entry, a value is automatically placed into the specified
data item during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE,

First Edition

DOC5039-184

DELETE, or START statement to indicate the status of that input-output
operation. FILE STATUS is discussed below with the ENVIRONMENT
division. A list of file status codes is given in Table A-5 of
Appendix A.

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a
START, READ, WRITE, REWRITE, or DELETE statement. For details of the
causes of the condition, see the relevant statement.

When the INVALID KEY condition is recognized, these actions occur in
the following order:

1. A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.

2. If the INVALID KEY phrase is specified in the statement causing
the condition, control is transferred to the INVALID KEY
imperative statement. Any USE procedure specified for this
file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure
is specified, either explicitly or implicitly, for this file,
that procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output
statement that caused the condition is unsuccessful and the file is not
a ffec ted.

The AT END Condition

The AT END condition can occur as a result of a READ statement,
details of the causes of the condition, see the READ statement.

First Edition

INDEXED SEQUENTIAL FILES

COMMON OPERATIONS ON INDEXED FILES

Files must be opened with the OPEN statement before any other 1-0
statements are executed, and must then be closed with CLOSE before the
program ends. A file must also be closed before being reopened in
another mode of operation.

The concept of record key is essential for most of the following
operations on indexed files, since MIDAS recognizes only the keys or
indexes, and knows nothing about the order or location of the data
records themselves.

nsBsr lEJjMrf- loJoiTJL'ol 5]

Create a File

. the MIDAS
» command ana an

isting data file, or with a COBOL program. Indexed files cannot be
. COBOL program until a MIDAS template exists.

The OOBOL program must describe the new file as indexed, and open it in
whichever access mode is desired. Before each record is written, a
unique value must be placed in the record key field.

all access modes, records may be in'
V l ' i l W ' l '

Position the File to a Certain Record

For sequential access or for dynamic access on sequential files, START
must be used to position the file if the first record is not desired.
If groups of records within the file are to be read sequentially, more
than one START may be used.

In random access mode, all reads use the primary key unless the KEY IS
clause is included. START is not used in random access mode.

Read a Certain Record

If the file is opened in sequential access, to read from the start of
the file in sequential order of the primary key no special operations
other than READ are necessary. If the first record is not desired or
if a secondary key order is desired, the first READ should be preceded
by START to specify the key of the first record sought. (START is
required to establish a secondary key.) All subsequent READs will
access each next record in key order until another START is used or an
error occurs.

First Edition

DOC5039-184

If random access is used, all READs use the primary key unless the KEY
IS clause is included.

If access will be both sequential and random, dynamic access mode
should be specified. To change from random to sequential reading, use
a series of Format-1 READs (READ NEXT or implied READ NEXT).

Establish a Key

The default key is the primary key for any 1-0 verb. To establish a
secondary key, use START KEY IS ... data-name or READ ... KEY is
data-name.

Delete a Certain Record

DELETE is used in all access modes. In sequential access mode, the
record must first be read. In random or dynamic access, the proper
value must be placed in the key field before the DELETE.

Update (Change) a Certain Record

The REWRITE statement is used, and the file must be opened for 1-0.
Before a rewrite in any access mode, the record must first have been
read to assure that it cannot be updated by another program running
concurrent ly.

Create (Add) Records

New records are added with WRITE.
erted in any order (a Prime ext

the primary key field.
The proper value must be in

Handle Errors in All of These Statements

The INVALID KEY clause and the USE statement in the declarative section
provide error handling. One of these elements is required for an 1-0
statement. AT END is used only for READ in SEQUENTIAL mode.

First Edition

INDEXED SEQUENTIAL FILES

ENVIRCNMENT DIVISION

This section stresses information that is unique to indexed files.
Information for sequential files and for relative files is given in
Chapters 6 and 13, respectively.

INPUT-OUTPUT SECTION — FILE OONTRCL

Function

The FILE-CONTRQL paragraph names each file and
file-related information.

specifies other

Format

SELECT file-name ASSIGN TO PFMS

; ORGANIZATION IS INDEXED

f SEQUENTIAL
; ACCESS MODE IS \ RANDOM

DYNAMIC

; RECORD KEY IS data-name-1

; i l=l i l=W]i i

[; FILE STATUS IS data-name-3].

General Rules

The SELECT clause specifies the name of the indexed sequential
file. The SELECT clause must be specified first in the
file-control-entry. The remaining clauses may appear in any
order. All indexed files are Prime File Management System
(PFMS) disk files.

The ORGANIZATION IS INDEXED clause speci
named in the SELECT clause contains data organized by indexe
and that it is to be processed by MIDAS. The file organizati
is established at the time the file is created and canno

nged by this cr

The ACCESS MODE clause specifies how an indexed file is to be
written or read. If it is omitted, sequential access is
implied. There are three access modes:

First Edition

DOC5039-184

When SEQUENTIAL is specified, records will be retrieved
in the order of ascending values for a given key field.

lme extens
ccording to

w r i
>rd ke

j When RANDOM is specified, the records are to be written
or retrieved randomly only, based on the value placed in
the RECORD KEY field prior to a READ or WRITE. The
complete RECORD KEY value must be placed in data-name-1
prior to every access operation; otherwise the record
will not be found. Random mode precludes a sequential
READ NEXT.

• When DYNAMIC access method is specified, a program can
read randomly or sequentially. Other operations follow
the rules for random access, except that START may be
used in dynamic access.

The REOORD KEY clause specifies the data item within each
record which is used for the primary index.

A N o t e

The primary key (data-name-1) must be within the
record-description-entry, and must be the first field
in the entry. The value in the primary key must be
unique for each record.

Data-name-1 must be the f i
escription associated with the FD entry for the f

It must not be of variable size.

Prime ext
or numeri

Multiple record-description-entries must have the same
data description in the same relative position for the
record key.

Data-name-1 must not be specified with an OCCURS clause,
or be contained within a group subordinate to an OCCURS
clause. This means it may not be subscripted or
indexed, but it may be qualified.

First Edition

INDEXED SEQUENTIAL FILES

Prime restriction: data-name-1 must
with a P character or a separator sign (/) i
PICTURE clause. It cannot exceed 32 characters.

Data-name-1 must have the same description and relativ
size as when the file template was created with CREATK.

• The value contained within data-name-1 must be unique
for each record in a file.

The ALTERNATE RECORD KEY clause specifies a data item within
each record that is used as a secondary index. There may be up
to 17 alternate record keys. The number of alternate record
keys cannot be greater than the number of secondary indexes
specified when the file was created with CREATK.

A l t e r n a t e r e c o r d k e y s m u s t b e p a r t o f t h e
record-description-entry, but they cannot be embedded within
nor overlap the primary record key. They follow the rules for
REOORD KEY above, except that an alternate key may not be the
first field in the record-description-entry and may have
duplicates.

Specificat io W T ndaryPLICATES do
Lue are place

iPLICATES should only be specified if duplicates are allowed
for the corresponding secondary index in the MIDAS or MIDAS
template. (The MIDAS file may be changed with the MODIFY
option of CREATK, as explained in Chapter 12 of the MIDAS
User's Guide.) If DUPLICATES is not specified, the secondary
key value in each record should be unique.

condary keys
,rresponding K

Alternate record keys may be nonnumeric (a Prime extension).

In the FILE STATUS clause, data-name-3 must be a two-character
field described in the DATA division. The file control system
moves a value into data-name-3 following the execution of every
statement that explicitly or implicitly references the file.
This value indicates the execution status of the statement.
Following a successful 1-0 operation, data-name-3 contains
'00'. The complete status codes are described in Table A-5 of
Appendix A.
The file status item (data-name-3) may not be part of the
record description for its file. It must be in the WORKING
STORAGE or LINKAGE section. It may be qualified but must not
be subscripted or indexed.

First Edition

DOC5039-184

I-0-CONTRQL

Function

The I-O-CONTROL paragraph specifies the points at which rerun is to be
established, and the memory area to be snared by different files.

Format
1-0 CONTROL.

[; SAME f RECORD] AREA FOR file-name-1 {,file-name-2} •••]

EVERY j integer-5 CLOCK-UNITS
condition-name

General Rules

1. The SAME REOORD AREA or SAME AREA clause specifies that two or
more files are to use the same memory area for processing of
the current logical record. This saves memory space and
eliminates MOVEs from one area to another. An example is
included in the sample program at the end of this chapter.

A logical record in the SAME RECORD AREA is considered both as
a logical record of each opened output file in this clause, and
as a record of the most recently read input file in this
clause. This is equivalent to an implicit redefinition of the
area; that is, records are aligned on the leftmost character
position.

2. If a file-name in a SAME AREA clause appears in a SAME RECORD
AREA clause, all of the file-names in the first clause must
appear in the second. However, additional file-names not
appearing in the first clause may also appear in the second
clause.

3. The files referenced in the SAME AREA or SAME RECORD AREA
clause need not all have the same organization or access.

On Prime systems, SAME AREA is equivalent to S

5. The RERUN clause specifies points in the program at which
processing can be restarted in case of premature end of
execution. The clause is syntax-checked only.

First Edition

INDEXED SEQUENTIAL FILES

DATA DIVISION

The elements of the DATA division are the same for indexed files
those described in Chapter 7 except for the following two items.

REOORD-DESCRIPT ION-ENTRY

The first field in the entry must be the primary key. Each record must
have a unique value for the primary key. Rules for primary and
secondary keys are given in the ENVIRONMENT section above.

First Edition

DOC5039-184

PROCEDURE DIVISION

The COBCL statements listed in this chapter are described only as they
apply to indexed file processing. A complete description of all OOBOL
verbs is provided in Chapter 8, PROCEDURE DIVISION.

CLOSE

Function

The CLOSE statement terminates the processing of files.

Format

CLOSE file-name-1 [, file-name-2]

itax Rule

The files named in the CLOSE statement
organization or access.

need have

General Rule

Once a CLOSE statement has been executed for a file, no other statement
can be executed for that file unless an intervening OPEN statement for
that file is executed.

First Edition

INDEXED SEQUENTIAL FILES

DELETE

Function

The DELETE statement logically removes a record from a file.

Format

DELETE file-name RECORD [;

itax Rule

The INVALID KEY clause must not be specified for a DELETE on a file in
sequential access mode. It must be specified for a DELETE on a file
that is not in sequential access mode and for which no USE procedure is
spec i fied .

General Rules

The DELETE statement logically removes a data record from the indexed
file together with all the associated index entries. The file must be
open for 1-0. Execution of DELETE causes the value of the FILE STATUS
data item, if any, to be updated. It does not affect the contents of
the record area associated with file-name.

Rules for Sequential Access

1. In sequential access, the record to be deleted must have been
successfully read before a delete can be executed.

2. The primary record key cannot be changed between the READ and
DELETE statements. Otherwise the INVALID KEY condition will
occur, and error code 22 will be placed in the FILE-STATUS
name, if one exists.

Rules for Random and lie Access

1. Random and dynamic access modes require that the primary key of
the record to be deleted be placed in the REOORD KEY field.

2. If that record does not exist in the file, the INVALID KEY
statement is executed and the FILE STATUS field, if any, has a
value of 23. INVALID KEY and FILE STATUS are discussed in
INDEXED FILE CONCEPTS at the start of this chapter.

First Edition

DOC5039-184

OPEN

Function

The OPEN statement initiates the processing of files,
checking of labels and other input-output operations,

It also performs

Format

r INPUT file-name-1 [, file-name-2] •••
OPEN \ OUTPUT file-name-3 [, file-name-4]

[l-O file-name-5 [, file-name-6] —

General Rules

1. A file opened as INPUT can be accessed only in a READ or START
statement.

2. A file opened as OUTPUT can be accessed only in a WRITE
statement.

3. A file opened as 1-0 can be accessed by a READ, WRITE, REWRITE,
START, or DELETE statement.

Note

NOt all 1-0 statements can be used in all access modes.
Table A-6 in Appendix A specifies the types of 1-0
statements that are permissible with the different
access modes.

4. Following the initial execution of an OPEN statement for a
file, the file cannot be opened again until it has been closed.

5. Execution of the OPEN statement does not obtain or release the
first data record.

6. When the INPUT or 1-0 phrase is specified, the execution of the
OPEN statement causes the labels to be checked. Output files
must be labeled with CREATK before OPEN.

7. The file-description-entry for a file opened in any mode must
be equivalent to that used when the file's template was created
with CREATK.

First Edition

INDEXED SEQUENTIAL FILES

Function

For sequential access, the READ statement makes available the next
logical record from a file. For random access, the READ statement
makes available a record with a specified key.

Format 1 (Sequential or Dynamic)

READ file-name [NEXT] RECORD [INTO data-name-1]

[; AT END imperative-statement]

Format 2 (Random or Dynamic)

READ file-name RECORD [INTO data-name-1]

[; KEY IS data-name-2]

[; INVALID KEY imperative-statement]

General Rules
1. The INTO phrase must not be used when the input file contains

data-name-1 and the re_
e the same storage area

2. The key name (data-name-2) must be the name of a data item
specified as a record key associated with file-name.

3. The key name may be qualified. It may not be subscripted or
indexed.

4. The INVALID KEY phrase (Format 2) or the AT END phrase (Format
1) should be specified if no applicable USE procedure is
specified for file-name.

5. The associated file must be open in the INPUT or 1-0 mode at
the time this statement is executed.

6. The execution of the READ statement causes the value of the
FILE STATUS data item, if any, associated with file-name to be
updated. FILE STATUS is discussed with INDEXED FILE CONCEPTS
at the beginning of this chapter.

First Edition

DOC5039-184

If the INTO phrase is specified, the record being read is moved
from the record area to data-name-1 according to the rules
specified for the MOVE statement without the OORRESPONDING
phrase. The implied MOVE does not occur if the execution of
the READ statement was unsuccessful. Any subscripting or
indexing associated with data-name-1 is evaluated after the
record has been read and immediately before it is moved to the
data item.

When the INTO phrase is used, the record being read is
available in both the input record area and data-name-1.

Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined. For indexed files the
key of reference is also undefined.

Rules for Format 1 (Sequential and Dynamic Access)

1. Format 1 must be used for all files in sequential access mode.

2. The NEXT phrase must be specified for files in dynamic access
mode, when records are to be retrieved sequentially.

3. The record to be made available by a Format-1 READ statement is
determined as follows:

• If the current record pointer was positioned by the
START or OPEN statement, the record to which it points
is made available, provided that it is still accessible.
If the record is no longer accessible, which may have
been caused by the deletion of the record or a change in
an alternate record key, the current record pointer is
updated to point to the next existing record within the
established key of reference. That record is then made
ava i lab le .

• If the current record pointer was positioned by the
execution of a previous READ statement, the current
record pointer is updated to point to the next existing
record in the file with the established key of reference
and then that record is made available.

4. If, at the time of execution of a Format-1 READ statement, the
position of the current record pointer for that file is
undefined, the execut ion o f tha t READ s ta tement is
unsuccessful.

5. If, at the time of the execution of a Format-1 READ statement,
no next logical record exists in the file, the AT END condition
occurs, and the execution of the READ statement is considered
unsuccessful.

First Edition

INDEXED SEQUENTIAL FILES

When the AT END condition is recognized, the following actions
are taken in the listed order:

• A value of 10 is placed into the FILE STATUS data item,
if specified for this file, to indicate an AT END
cond i t ion .

i I f the AT END phrase is specified, control is
transferred to the associated imperative statement. Any
USE procedure specified for this file is not executed.

» If the AT END phrase is not specified, then the USE
procedure specified for this file is executed, or else
execution is aborted.

When the AT END condition has been recognized, a Format-1 READ
statement for that file must not be executed without first
executing one of the following:

• A successful CLOSE statement followed by the execution
of a successful OPEN statement for that file.

i A successful START statement for that file.

• A successful Format-2 READ statement for that file.

For a file for which dynamic access mode is specified, a
Format-1 READ statement with the NEXT phrase specified causes
the next logical record to be retrieved from that file as
described in General Rule 3 for Format 1.

If an alternate record key is the key of reference and
duplicates are allowed, records having the same value in that
key are read in the same order in which they were written.

Rules for Format 2 (Random and Dynamic Access)

1. Format 2 is used for files in random access mode or for files
in dynamic access mode when records are to be retrieved
randomly.

2. For an indexed file, if the KEY phrase is specified in a
Format-2 READ statement, data-name-2 is established as the key
of reference for this retrieval.

First Edition

DOC5039-184

If the KEY phrase is not specified in a Format-2 READ
statement, the primary record key is established as the key of
reference for this retrieval. If the dynamic access mode is
specified, this key of reference is also used for retrievals by
any subsequent executions of Format-1 READ statements for the
file until a different key of reference is established for the
fi l e .

Execution of a Format-2 READ statement causes the value of the
key of reference to be compared with the value contained in the
corresponding index until the record having an equal value is
found or, for a secondary key, the first record having the
value is found. The current record pointer is positioned to
this record which is then made available. If no record can be
so identified, the INVALID KEY condition exists and execution
of the READ statement is unsuccessful.

First Edition

INDEXED SEQUENTIAL FILES

REWRITE

Function

The REWRITE statement logically replaces a record on a disk file.

Format

REWRITE record-name [FROM data-name]

[; INVALID KEY imperative-statement]

tax Rules

le record-name
ea.

The record-name is the name of a logical record in the FILE
section of the DATA division and may be qualified.

The INVALID KEY phrase must be specified in the REWRITE
statement for files for which an appropriate USE procedure is
not specified.

General Rules

1. A record must have been read successfully prior to the REWRITE.
This is required to lock the record and ensure that it cannot
be updated by another program running concurrently.

2. The REWRITE statement can change any or all data-fields in the
record except the primary record key. If the primary key last
read is changed, control is passed to the INVALID KEY or USE
statement, and the value 22 is placed in the FILE STATUS name,
if one exists.

3. The file must be opened for 1-0 for all access methods.

4. The FROM option allows the record to be created in another
area. It is equivalent to MOVE data-name TO record-name prior
to the execution of the REWRITE statement. The primary key
value must equal the key from the previous READ or the INVALID
KEY conditions will occur.

5. The number of character positions in the record referenced by
record-name must be equal to the number of character positions
in the record being replaced.

First Edition

DOC5039-184

Frime extensic
execution of

»rd ar<

If the associated file is named in a SAME RECORD AREA clause,
the logical record is also available to the program as a record
of other files appearing in the same clause.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated.

The contents of the alternate record key data item of the
record being rewritten may differ from those in the record
being replaced if DUPLICATES has been used in the MIDAS
template; otherwise, the secondary indexes are updated but the
INVALID KEY condition is invoked and the record is unchanged.

The INVALID KEY condition exists under any of the following
condi t ions:

• The value contained in the primary record key data item
of the record to be replaced is not equal to the value
of the primary record key of the last record read from
th is fi le .

The value contained in an alternate record key data item
for which a DUPLICATES clause has not been specified
with CREATK is equal to that of a record already stored
in the file.

The updating operation does not take place and the data in the
record area is unaffected.

First Edition

DOC5039-184

START

Function

The START statement establishes a position in the file for subsequent
READs.

Format

START file-name KEY IS

EQUAL TO

GREATER THAN

NOT LESS THAN
NOT<

data-name

[; INVALID KEY imperative-statement]

itax Rules

1. The file-name must be the name of an indexed file with
sequential or dynamic access.

2. The data-name may be qualified but not indexed or subscripted.
It may reference a data item that is a record key associated
with the file.

3. The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

4. The data-name may reference any data item subordinate to the
data-name specified as a record key or alternate record key of
fi l e - n a m e , p r o v i d i n g i t s l e f t m o s t c h a r a c t e r p o s i t i o n
corresponds to the leftmost character position of that key.
Thus, partial keys are allowed with this statement.

General Rules

1. File-name must be open in the INPUT or 1-0 mode at the time
that the START statement is executed.

2. If the KEY phrase is not specified, the relational operator 'IS
EQUAL TO' and the primary record key are implied.

3. The current record pointer is positioned to the first logical
record in the file whose key satisfies the comparison.

First Edition

INDEXED SEQUENTIAL FILES

If the comparison is not satisfied by any record in the file,
an INVALID KEY condition exists, the execution of the START
statement is unsuccessful, and the position of the current
record pointer is undefined.

The execution of the START statement causes the value of the
FILE STATUS data item, if any, associated with file-name to be
updated. FILE STATUS is explained at the beginning of this
chapter.
If the KEY phrase is specified, the comparison uses the data
item referenced by data-name.

After successful execution of the START statement, a key of
reference is established and used in subsequent Format-1 READ
statements as follows:

If the KEY phrase is not specified, the primary record
key specified for file-name becomes the key of
reference.

If the KEY phrase is specified, and data-name is
specified as a record key for file-name, that record key
becomes the key of reference.

START does not retrieve a record, but only positions to a
desired record.

If execution of START is unsuccessful, the key of reference is
undefined.

In the following indexed file, each record contains a NAME field that
serves as primary key and a COMPANY field:

data-name NAME COMPANY

Picture PIC X(10) PIC X(25)

Values BLYE REPORTCO
CLAPP MERGANTHALER
FIELDS SERVICE
GREER AUTOMATION
HARPER DESIGNERS
KEANE REPORTCO

First Edition

DOC5039-184

Source coding to describe the file might be;

ENVIRCNMENT DIVISION.

SELECT FILE-1 ASSIGN TO PFMS
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
REOORD KEY IS NAME.

DATA DIVISION.
FILE SECTION.
FD FILE-1 LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS 'FILE-1'.
01 FILE-1-REOORD.

05 NAME PIC X(10).
05 COMPANY PIC X(25).

To print records of people whose name begins with the characters F, G,
H, and I, program actions should include a START statement to position
the file to the first name beginning with one of these letters, and a
series of executions of sequential READ statements.

To position with the START statement, the key field (NAME) must first
be in i t ia l ized.

MOVE 'F to NAME.

START FILE-1 KEY IS NOT LESS THAN NAME
INVALID KEY STOP RUN.

Init ial ize key field.

Find the first record
whose key is not less
than 'F'. This posi
t i o n s t h e fi l e t o
this record (FIELDS).

READ FILE-1 NEXT REOORD,
AT END STOP RUN.

R e t r i e v e t h e fi r s t
record (FIELDS).

PERFORM 120-READ-NEXT UNTIL NAME NOT
LESS THAN 'K'.

T h i s a c t i o n w i l l
retrieve the records
from GRIER through
KEANE, and print all
except KEANE.

120-READ-NEXT.
WRITE PRINT-LINE FROM FILE-1-REO0RD.
READ FILE-1 NEXT RECORD
AT END STOP RUN.

First Edition

DOC5039-184

WRITE

Function

The WRITE statement releases a logical record for an output or
input-output file.

Format

WRITE record-name [FROM data-name-1]

[; INVALID KEY imperative-statement]

itax Rules

i&Sr i§S(§®JtoRa§SK§ iR&SNI LUW I©!!® l^nXi 5§hS'© £t5@i£@§ gS3§§te

The record-name is the name of a logical record in the FILE
section of the DATA division and may be qualified.

The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

General Rules

1. The associated file must be open in the OUTPUT or 1-0 mode.

tyj&S/su i®Sfi ®ji)

The logical record released by the WRITE statement is also
available to the program as a record of other files referenced
in the same SAME REOORD AREA clause as the associated output
fi l e .

Execution of the WRITE statement with the FROM phrase is
equivalent to the statement MOVE data-name-1 TO record-name,
followed by a WRITE statement.

After execution of the WRITE statement is complete, the
information in the area referenced by data-name-1 is available.

The execution of the WRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated. FILE STATUS is explained with INDEXED FILE CONCEPTS
at the start of this chapter.

First Edition

INDEXED SEQUENTIAL FILES

data-name-1 should not
established with CREATK.

Rules for Record Keys

1. MIDAS or MIDAS stores the written record in such a way that
subsequent access may be made based upon any of the record
keys.

2. The value of the primary record key must be unique within the
records in the file.

3. The data item specified as the primary record key must be set
by the program to the desired value prior to the execution of
the WRITE statement.

: extension: in all access modes, records may be written
i any order.

The value of the alternate record key, if any, may be nonunique
only if the DUPLICATES phrase is specified in CREATK for that
data item. In this case, the order of retrieval of record
with dup

The INVALID KEY condition exists under any of the following
circumstances:

• When the value of the primary record key is equal to the
value of a primary record key of a record already
existing in the file.

• When the value of an alternate record key for which
duplicates are not allowed equals the corresponding data
item of a record already existing in the file.

First Edition

DOC5039-184

EXAMPLE

This sample program illustrates use of the SAME RECORD AREA clause as
well as indexed concepts. Since TRANS-FILE and MASTER-FILE share the
same record area, no MOVE or WRITE FROM is necessary to write a
transaction record to MASTER-FILE.

The MIDAS routines needed to create the two indexed files are listed in
Appendix E.

ID DIVISION.
PROGRAM-ID. RANDOM!.

* *
REMARKS. THIS PROGRAM ILLUSTRATES READ, WRITE, REWRITE, AND

DELETE IN RANDOM ACCESS MODE, AND CREATION OF AN INDEXED
FILE.

IN ALL CASES, THE KEY IS IN MASTER-RECORD AS SOON AS
TRANS-FILE IS READ BECAUSE OF THE SAME AREA CLAUSE.
NO MOVE OF ACCT-ENTRY TO ACCT-MS IS NECESSARY.

* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-OOMPUTER. PRIME.
CBJECT-OOMPUTER. PRIME.
INPUT-OUTPUT SECTION.

*
FILE-CONTROL.

*
SELECT MASTER-FILE ASSIGN TO PFMS

ORGANIZATION IS INDEXED,
ACCESS MODE IS RANDOM,
REOORD KEY IS ACCT-MS
FILE STATUS IS FS-MS.

*
SELECT TRANS-FILE ASSIGN TO PFMS,

ORGANIZATION IS SEQUENTIAL,
FILE STATUS IS FS-TR.

*
SELECT NEW-FILE ASSIGN TO PFMS,

ORGANIZATION IS INDEXED,
ACCESS IS RANDOM,
REOORD KEY IS ACCT-NEW,
FILE STATUS IS FS-NEW.

*
SELECT PRINT-FILE ASSIGN TO PRINTER.

*
I-O-OONTRQL.

SAME REOORD AREA FOR TRANS-FILE, MASTER-FILE.

F i r s t Ed i t i on

INDEXED SEQUENTIAL FILES

DATA DIVISION.
FILE SECTION,

t

FD MASTER-FILE COMPRESSED,
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS KDISBURS,
RECORD CONTAINS 42,
DATA RECORD IS MASTER-RECORD.

01 MASTER-RECORD.
05 ACCT-MS
05 DATE-MS
05 FILLER
05 VENDOR-MS
05 CHECK-MS
05 AMT-MS

PIC X(3).
PIC 9(6).
PIC X(3).
PIC X(20).
PIC X(3).
PIC 9(7).

FD TRANS-FILE COMPRESSED,
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS TRANSFL,
REOORD CONTAINS 43,
DATA RECORD IS TRANS-RECORD.

01 TRANS-RECORD.
05 TRANS-ENTRY.

10 ACCT-ENTRY PIC X(3) .
1 0 F I L L E R P I C X (3 9)

0 5 E N T R Y - C O D E P I C X .

NEW-FILE COMPRESSED,
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS NEWFILE,
REOORD CONTAINS 42,
DATA RECORD IS NEW-RECORD.
NEW-REOORD.
05 NEW-ENTRY.

10 ACCT-NEW
10 FILLER

05 NEW-CODE

PIC X(3).
PIC X(38)
PIC X.

PRINT-FILE,
LABEL RECORDS ARE OMITTED,
REOORD CONTAINS 42,
DATA REOORD IS PRINT-LINE.
PRINT-LINE PIC X(42).

WORKING-STORAGE SECTION.
77 FS-NEW
77 FS-MS
77 FS-TR
77 KDISBURS

77 NEWFILE

PIC XX VALUE '00'.
PIC 99 VALUE 00.
PIC XX VALUE »00'.
PIC X(28)

VALUE 'ANNE.K PASSWD>MIDAS>KDISBURS'
PIC X(27)

VALUE 'ANNE.K PASSWD>MIDAS>NEWFILE',
77 NO-MORE-INPUT PIC X VALUE *N'.

First Edition

DOC5039-184

7 7 P R I N T- O O U N T P I C 9 9 VA L U E 0 0 .
7 7 T R A N S F L P I C X (2 8)

VALUE 'ANNE.K PASSWD>MIDAS>TRANSFL'.
* *
PROCEDURE DIVISION.

*
*DECLARATIVES.
* THIS SECTION SHOULD DISPLAY FILE-STATUS FOR ANY ERRORS
* NOT CAUGHT BY INVALID KEY OR AT END CLAUSES.
*END DECLARATIVES.
*
000-MAINLINE.

READY TRACE.
OPEN INPUT TRANS-FILE,

1-0 MASTER-FILE,
1-0 NEW-FILE,
OUTPUT PRINT-FILE.

PERFORM 010-PRINT-HEADINGS.
READ TRANS-FILE AT END

DISPLAY 'INPUT FILE IS EMPTY*,
CLOSE TRANS-FILE, MASTER-FILE, NEW-FILE, PRINT-FILE,
STOP RUN.

PERFORM 020-PROCESS-TRANS UNTIL NO-MORE-INPUT = 'Y'.
CLOSE TRANS-FILE,

MASTER-FILE,
NEW-FILE,
PRINT-FILE.

STOP RUN.
*
010-PRINT-HEADINGS.

*NOT INCLUDED.
*
020-PROCESS-TRANS.

IF ENTRY-OODE = 'U' PERFORM 100-UPDATE
ELSE IF ENTRY-OODE = 'A' PERFORM 110-ADD

ELSE IF ENTRY-OODE = 'D' PERFORM 120-DELETE
ELSE PERFORM 200-CREATE-ERROR-FILE.

READ TRANS-FILE AT END
MOVE 'Y' TO NO-MORE-INPUT
DISPLAY 'END OF FILE',
IF PRINT-OOUNT = 0 MOVE 'NO PRINT RECORDS' TO PRINT-LINE,

WRITE PRINT-LINE AFTER ADVANCING 2.
*
100-UPDATE.

READ MASTER-FILE INVALID KEY
MOVE 'N' TO NEW-CODE
PERFORM 200-CREATE-ERROR-FILE.

REWRITE MASTER-RECORD INVALID KEY
DISPLAY 'INVALID REWRITE' .

110-ADD.
WRITE MASTER-RECORD INVALID KEY

DISPLAY *I GOT HERE', MOVE 'D' TO ENTRY-OODE,

First Edition

INDEXED SEQUENTIAL FILES

PERFORM 200-CREATE-ERROR-FILE.

120-DELETE.
DELETE MASTER-FILE REOORD, INVALID KEY

MOVE 'N' TO ENTRY-OODE,
PERFORM 200-CREATE-ERROR-FILE.

200-CREATE-ERROR-FILE.
ERRONEOUS INPUT RECORDS ARE WRITTEN TO THE INDEXED
NEW-FILE UNLESS A KEY IS DUPLICATED WITHIN NEW FILE.
IN THAT CASE, THE ERROR REOORD IS PRINTED INSTEAD.

MOVE ENTRY-OODE TO NEW-OODE.
MOVE TRANS-ENTRY TO NEW-ENTRY.
WRITE NEW-REOORD, INVALID KEY

MOVE NEW-REOORD TO PRINT-LINE,
WRITE PRINT-LINE AFTER ADVANCING 1,
ADD 1 TO PRINT-COUNT.

To compile, load, and execute this file, stored as RANDOM.CBL, use the
following dialog.

OK, CBL RANDOM -LIST

[CBL rev x.x]
OK, SEG -LOAD
[SEG rev 19.0]
$ LO RANDOM
$ LI CBLLIB

LOAD COMPLETE
$ EXEC
trace: 010-PRINT-HEADINGS
trace: 020-PROCESS-TRANS
trace: 110-ADD
trace: 020-PROCESS-TRANS
trace: 120-DELETE
trace: 020-PROCESS-TRANS
trace: 100-UPDATE
trace: 020-PROCESS-TRANS
trace: 20 0-CREATE-ERROR-FILE
t race: 020-PROCESS-TRANS
trace: 100-UPDATE
trace: 20 0-CREATE-ERROR-FILE
End of file. (KX$MYB)

26 MIDAS ERROR
INVALID REWRITE
END OF FILE
OK,

First Edition

DOC5039-184

Input File

This display results from use of the following input file to KDISBURS:

408080178
409080178
410080278
411080278
412080378
413090378
C82080778
4500B0778
580080778
681080778

ASHTABULA HDWE 4300035476
CAIRO CHEMICAL 4360002746
ST.BOTOLPHSTOWN SUPP4200005108
DOVER MUTUAL
PARIS AUTO
ROME BOATING
ODESSA SERVICES
ANTIOCH SERVALL
BETHLEHEM TAXI
ATHENS LUMBER

4100034166
4100015000
4150017982
4100004670
4300002580
RR00009840
18500036BB

Output File

The print-file will look like this.

NO PRINT RECORDS

For subsequent executions, enter SEG RANDOM.

First Edition

Relative Files

FUNCTION OF THE RELATIVE 1-0 MODULE

The Relative 1-0 module allows access of records of a disk file in
either a random or a sequential manner. Each record in a relative file
is uniquely identified by its relative key, an integer value that
specifies the record's position in the file.

^y^Mff
Prime OOBOL Relative 1-0 module is

2ss (relative) files created with the i
OOBOL relative key corresponds to the MIDASPLUS direct acces
ary index. The relative key is part of the MIDASPLUS record

lescription but is not part of the OOBOL record description. How to

Bpare files for COBOL access with MIDASPLUS is discussed in AppendixThe subject is presented in more detail in the section on DIRECT
SS in the MIDAS User's Guide.

Caution

Do not use OOBOL with an outdated revision of MIDAS or
MIDASPLUS.

LOADING AND EXECUTING PROGRAMS WITH RELATIVE FILES

Use the SEG command steps in Chapter 3 to load a runfile. An example
of loading is given at the end of this chapter.

First Edition

DOC5039-184

RELATIVE FILE CONCEPTS

Oraanization

Relative file organization is permitted only on disk. A relative file
consists of records that are identified by relative record numbers.
The file may be thought of as composed of a serial string 6r array of
areas, each capable of holding a logical record. Each of these areas
is identified by a relative record number. Records are stored and
retrieved based on this number. For example, the tenth record is the
one addressed by relative record number 10 and is in the tenth record
area, whether or not records have been written in the first through the
ninth record areas.

The file may be represented in Figure 13-1.

A Relative File
Figure 13-1

First Edition

RELATIVE FILES

The data i tem named in the RELATIVE KEY clause of the
file-control-entry for a file contains the current record number for
that file. For inserting, updating, and deleting records in a file,
each record is identified solely by the value of its relative key.
This value must, therefore, be unique and must not be changed when
updating the record. The RELATIVE KEY data item is not part of the
file's OOBQL record description.

. access fil
>rds must have been set and all fields must have been declared when

mot be changed merely by theiric nJL(— i a—m »JI fs t^cm

Access Modes

Three access modes are possible in OOBCL for relative files. They are
specified in the SELECT clause:

• In sequential access mode, the sequence in which records are
accessed is the ascending order of the relative key values.

• In random access mode, the sequence in which records are
accessed is controlled by the program. The desired record is
accessed by placing its relative record number in the relative
key data item.

In dynamic access mode, the programmer may change at will from
sequential access to random access for reading the file. Access
mode requirements for each statement are discussed in the
section COMMON OPERATIONS CN RELATIVE FILES later in this
chapter.

Current Record Pointer

The current record pointer is a conceptual entity used to indicate the
next record to be accessed within a given file. The concept of the
current record pointer has no meaning for a file opened in the output
mode. The setting of the current record pointer is affected only by
the OPEN, START, and READ statements.

File Status

A file status check should be coded in the program to determine the
success or failure of an 1-0 operation. The result can be used to
control the next action. If the FILE STATUS clause is specified in a
file-control-entry, a value is automatically placed in the specified
data item during the execution of an OPEN, CLOSE, READ, WRITE, REWRITE,

First Edition

DOC5039-184

DELETE, or START statement to indicate the status of that input-output
operation. FILE STATUS is discussed below with the ENVrROSIMENT
division. A list of file status codes is given in Table A-5 of
Appendix A.

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution of a
START, READ, WRITE, REWRITE, or DELETE statement. For details of the
causes of the condition, see the relevant statement.

When the INVALID KEY condition is recognized, these actions occur in
the following order:

1. A value is placed in the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.

2. If the INVALID KEY phrase is specified in the statement causing
the condition, control is transferred to the INVALID KEY
imperative statement. Any USE procedure specified for this
file is not executed.

3. If the INVALID KEY phrase is not specified, but a USE procedure
is specified, either explicitly or implicitly, for this file,
that procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output
statement that caused the condition is unsuccessful and the file is not
affected by the statement involved in the condition.

The AT END Condition

The AT END condition can occur as a result of the execution of a READ
statement. For details of the causes of the condition, see the READ
statement.

First Edition

RELATIVE FILES

COMMON OPERATIONS CN RELATIVE FILES

Files must be opened with the OPEN statement before any other 1-0
statements are executed, and must then be closed with CLOSE before the
program ends. A file must be closed before being reopened in another
mode of operation.

The concept of relative key is essential for most of the following
operations on relative files, since MIDASPLUS recognizes only the keys
or indexes, and knows nothing about the order or location of the data
records themselves.

Create a File

Use the MIDASPLUS CREATK command to create a direct access file
template. Then create records on that template either with the
MIDASPLUS KBUILD command and an existing data file, or with a COBOL
program. Relative files cannot be created by a COBOL program until a
MIDASPLUS template exists.

Create (Add) Records

New records are added with WRITE. In sequential access, the records
written begin with the first position regardless of any value in the
key field. In random or dynamic access, the proper value must be in
the relative key before WRITE. In random or dynamic mode, records may
be written in any order and inserted anywhere in an existing file.

Position the File to a Certain Record

For sequential access or for dynamic access on sequential files, START
should be used to position the file before the first READ. An
exception is a sequential access that starts with the first record in
the file. If groups of records within the file are to be read
sequentially, more than one START may be used.

In random access mode, the data-name after KEY IS must be used and must
contain the position of the record for each READ. START is not used.

First Edition

DOC5039-184

Read a Certain Record

If the file is opened in sequential access, to read from the start of
the file in sequential order of the key no special operations other
than READ are necessary. If the first record is not desired, the first
READ should be preceded by START in sequential or dynamic mode to
specify the key of the first record sought. All subsequent READs will
access each next record in key order until another START is used.

If random access is used, a key must be specified before each READ by
moving a value into the KEY field or by START.

If access will be both sequential and random, dynamic access mode
should be specified, and READ NEXT should be used to change from random
to sequential reading.

Delete a Certain Record

The DELETE statement is used. In all access modes, the proper value
must be placed in the key field before the DELETE. In sequential mode,
the record must be read first.

Update (Change) a Certain Record

The REWRITE statement is used, and the file must be opened for 1-0.
Before a rewrite in any access mode, the record must first have been
read to assure that it cannot be updated by another program running
concurrent ly.

Handle Errors in All of These Statements

The INVALID KEY clause and the USE statement in the declarative section
provide error handling. One of these elements is required for an 1-0
statement. AT END is used only with READ in sequential mode.

First Edition

RELATIVE FILES

ENVIRONMENT DIVISION

This section stresses information that is unique to relative files.
Information for the ENVIRONMENT division for sequential and indexed
files is given in Chapters 6 and 12, respectively.

INPUT-CUTPUT SECTION — FILE OONTRCL

Function

The FILE-OONTROL paragraph names each file and
file-related information.

specifies other

Format

SELECT file-name ASSIGN TO PFMS

; ORGANIZATION IS RELATIVE

; ACCESS MODE IS
SEQUENTIAL [, RELATIVE KEY IS data-name-1]

RANDOM

DYNAMIC
, RELATIVE KEY IS data-name-1

[; FILE STATUS IS data-name-2].

General Rules

1. The SELECT clause specifies the name of the relative file. The
S E L E C T c l a u s e m u s t b e s p e c i fi e d fi r s t i n t h e
file-control-entry. The remaining clauses may appear in any
order. All relative files are Prime File Management System
(PFMS) disk files.

First Edition

DOC5039-184

2. The ORGANIZATION IS RELATIVE clause specifies that the file
named in the SELECT clause contains data organized by relative
keys, and that it is to be processed by MIDASPLUS. The file
organization is established at the time the file is created and
cannot be changed by this clause.

3. The ACCESS MODE clause specifies how a file is written or read.
If it is omitted, sequential access is implied.

When SEQUENTIAL is specified, records will be written or
retrieved in the order of ascending record number.

▶ When RANDOM is specified, the records are to be written
or retrieved randomly only, based on the value placed in
the RELATIVE KEY field prior to a READ or WRITE. Random
mode precludes a sequential READ or WRITE.

• When DYNAMIC is specified, a program can read randomly
or sequentially, and START may be used. Other
operations follow the rules for random access.

4. The RELATIVE KEY clause specifies the data item used for the
primary MIDASPLUS index. Data-name-1 is used to communicate a
relative record number between the OOBCL program and MIDASPLUS.
RELATIVE KEY need not be specified for sequential access.

Data-name-1 must not be defined in the record
description associated with file-name. It must refer to
an unsigned integer.

Note

Data-name-1 cannot have a value exceeding
999,999. It may be described with DISPLAY or
OOMP-3 as large as PIC 9(6), or with OOMP as
large as PIC 9 (18). If its value exceeds
999,999, or the maximum value allowed by its
PICTURE, the value will be truncated at runtime
and results will be unpredictable. The size of
the relative key in the OOBCL program need not
be as large as the size specified for the
corresponding index in the MIDASPLUS file. (See
Appendix B.)

Data-name-1 must not be specified with an OCCURS clause,
or be contained within a group subordinate to an OCCURS
clause. This means it may not be subscripted or
indexed, but it may be qualified.

Data-name-1 must not be specified with a P character or
a separate sign in its PICTURE clause.

First Edition

RELATIVE FILES

All records stored in a relative file are uniquely identified
by relative record numbers (the MIDASPLUS primary index). The
relative record number of a given record specifies the record's
logical ordinal position in the file. The first logical record
has a relative record number of 1, and subsequent logical
records have relative record numbers of 2, 3, 4, and so on.

In the FILE STATUS clause, data-name-2 must be a two-character
field described in the DATA division. The file control system
moves a value into data-name-2 following the execution of every
statement that explicitly or implicitly references the file.
This value indicates the execution status of the statement to
the program. Following a successful 1-0 operation, data-name-3
contains '00'. The complete status codes are described in
Table A-5 of Appendix A.

The file status field (data-name-2) may not be part of the
record description for its file. It may be qualified but must
not be subscripted or indexed.

First Edition

DOC5039-184

I-O-OONTROL

Function

The I-O-OONTROL paragraph specifies the memory area to be shared by
d i f fe ren t fi les .

Format

1-0 CONTROL.

[; SAME [RECORD] AREA FOR file-name-1 {,file-name-2} •••]

f integer-1 CLOCK-UNITS
EVERY I integer-2 RECORDS OF file-name-4

I condition-name

General Rules

The SAME RECORD AREA or SAME AREA clause specifies that two or
more files are to use the same memory area for processing of
the current logical record. This saves memory space and
eliminates MOVEs between record areas. A logical record in the
SAME REOORD AREA is considered both as a logical record of each
opened output file in this clause, and as a record of the most
recently read input file in this clause. This is equivalent to
an implicit redefinition of the area; that is, records are
aligned on the leftmost character position.
If one or more file-names of a SAME AREA clause appear in a
SAME REOORD AREA clause, all of the file-names in the first
clause must appear in the second clause. However, additional
file-names not appearing in that SAME AREA clause may also
appear in that SAME REOORD AREA clause.
The files referenced in the SAME AREA or SAME REOORD AREA
clause need not all have the same organization or access.

On Prime systems, SAME AREA is equivalent to SAME REOORD I_

The RERUN clause specifies points in the program at which
processing can be restarted in case of premature end of
execution. The clause is syntax-checked only.

First Edition

RELATIVE FILES

DATA DIVISION

The elements of the DATA division for relative files are the sam
those described in Chapter 7 except for the following three items.

REOORD-DESCRIPTION-ENTRY

OOBOL record lengths and MIDASPLUS record lengths must be the same.
The relative-key portion of the record may be described as FILLER in
the OOBCL description, as in the example at the end of this chapter.

RELATIVE KEY

The relative
for its file.
discussion.

key data item must not be part of the record description
See INPUT-OUTPUT SECTION — FILE CONTROL above for c

First Edition

DOC5039-184

PROCEDURE DIVISION

The OOBQL statements listed in this chapter are described only as they
apply to relative file processing. A complete description of all OOBOL
verbs is provided in Chapter 8, THE PROCEDURE DIVISION.

CLOSE

Function

The CLOSE statement terminates the processing of files.

Format

CLOSE file-name-1 [, file-name-2]

itax Rule

The files named in the CLOSE statement need not all have the same
organization or access.

General Rule

Once a CLOSE statement has been executed for a file, no other statement
can be executed for that file unless an intervening OPEN statement for
that file is executed.

First Edition

RELATIVE FILES

DELETE

Function

The DELETE statement removes a record from a disk file.

Format

DELETE file-name RECORD [; INVALID KEY imperative-statement]

itax Rules

1. The INVALID KEY clause must not be specified for
statement on a file open in sequential access mode.

DELETE

2. The INVALID KEY clause must be specified for a DELETE statement
on a file open in relative or dynamic access mode for which a
USE procedure is not specified.

General Rule

The DELETE statement logically removes a data record from the file
together with the index. The file must be open in 1-0 mode. Execution
of DELETE causes the value of the FILE STATUS data item, if any, to be
updated. It does not affect the contents of the record area associated
with file-name.

Rules for Sequential Access

In sequential access, the record to be deleted must have been
successfully read before a DELETE can be executed. The RELATIVE KEY
cannot be changed between the READ and DELETE statements.

Rules for Random and Dynamic Access

Random and dynamic access modes also require that the record first be
read. If that record does not exist in the file, the INVALID KEY
statement is executed if one exists; otherwise the appropriate USE
declarative procedure is invoked. The FILE STATUS field, if any, will
contain a value of 23. INVALID KEY and FILE STATUS are discussed in
RELATIVE FILE CONCEPTS at the beginning of this chapter.

13-13 First Edition

DOC5039-184

OPEN

Function

The OPEN statement initiates the processing of files,
checking of labels and other input-output operations,

It also performs

Format

r INPUT file-name-1 [, file-name-2] •••
OPEN j OUTPUT file-name-3 [, file-name-4] •••

[l-O file-name-5 [, file-name-6] —

General Rules

1. A file opened as INPUT can be accessed only in a READ or START
statement.

2. A file opened as OUTPUT can be accessed only in a WRITE
statement.

3. A file opened as 1-0 can be accessed only by a READ, WRITE,
REWRITE, START, or DELETE statement.

Note

Not all 1-0 statements can be used in all access modes.
Table A-6 in Appendix A specifies the types of 1-0
statements permissible with the different access modes.

Following the initial execution of an OPEN statement for a
file, each subsequent OPEN statement for that same file must be
preceded by a CLOSE statement for the file.

Execution of the OPEN statement does not obtain or release the
first data record.

When the input or 1-0 phrase is specified, the execution of the
OPEN statement causes the labels to be checked. Output files
must be labeled with CREATK.

The file-description-entry for a file opened in any mode %
be equivalent to that used when this file's template w.
created with CREATK.

For relative files being opened with the INPUT or 1-0 phrase,
the file is positioned to the first record in the file.

First Edition

DOC5039-184

READ

Function

For sequential access, the READ statement makes available the next
logical record from a file. For random access, the READ statement
makes available a record with a specified key value.

Format 1 (Sequential or Dynamic)
READ file-name [NEXT] RECORD [INTO data-name-1]

[; AT END imperative-statement]

Format 2 (Random or Dynamic)

READ file-name RECORD [INTO data-name-1]

[; INVALID KEY imperative-statement]

General Rules

1. The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by their record
descriptions.

2. The INVALID KEY phrase (Format 2) or the AT END phrase (Format
1) should be specified if no applicable USE procedure is
specified for file-name.

3. The associated file must be open in the INPUT or 1-0 mode at
the time this statement is executed.

4. The execution of the READ statement causes the value of the
FILE STATUS data item, if any, associated with file-name to be
updated. FILE STATUS is discussed with RELATIVE FILE CONCEPTS
at the beginning of this chapter.

First Edition

RELATIVE FILES

If the INTO phrase is specified, the record being read is moved
from the record area to data-name-1 according to the rules
specified for the MOVE statement without the CORRESPONDING
phrase. The implied MOVE does not occur if the execution of
the READ statement was unsuccessful. Any subscripting or
indexing associated with data-name-1 is evaluated after the
record has been read and immediately before it is moved to the
data item.

When the INTO phrase is used, the record being read is
available in both the input record area and data-name-1.

Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

Rules for Format 1 (Sequential and Dynamic Access)

1. Format 1 must be used for all files in sequential access mode.

2. The NEXT phrase must be specified for files in dynamic access
mode, when records are to be retrieved sequentially. If NEXT
is not used, the relative record number of the record to be
retrieved must be placed in the key field.

3. The record to be made available by a Format-1 READ statement is
determined as follows:

If the current record pointer was positioned by the
START or OPEN statement, the record to which it points
is made available, provided that it is still accessible.
If the record is no longer accessible, which may have
been caused by the deletion of the record, the current
record pointer is updated to point to the next existing
record and that record is then made available.

If the current record pointer was positioned by the
execution of a previous READ statement, the current
record pointer is updated to point to the next existing
record in the file. Then that record is made available.

4. If, at the time of execution of a Format-1 READ statement, the
posit ion of the current record pointer for that file is
undefined, the execut ion o f tha t READ s ta tement i s
unsuccessful.

5. If, at the time of the execution of a Format-1 READ statement,
no next logical record exists in the file, the AT END condition
occurs, and the execution of the READ statement is considered
unsuccessful.

First Edition

DOC5039-184

When the AT END condition is recognized, the following actions
are taken in the specified order:

• A value is placed in the FILE STATUS data item, if
specified for th is fi le, to indicate an AT END
condi t ion.

If the AT END phrase is specified in the statement,
control is transferred to the AT END imperative
statement. Any USE procedure specified for this file is
not executed.

If the AT END phrase is not specified, then the USE
p r o c e d u r e s p e c i fi e d f o r t h i s fi l e i s e x e c u t e d .
Otherwise execution is aborted.

When the AT END condition has been recognized, a Format-1 READ
statement for that file must not be executed without first
executing one of the following:

• A successful CLOSE statement followed by the execution
of a successful OPEN statement for that file.

• A successful START statement for that file.

i A successful Format-2 READ statement for that file.

In dynamic access mode, a Format-1 READ statement with the NEXT
phrase causes the next logical record to be retrieved from that
file, as described in General Rule 3 for Format 1.

If the RELATIVE KEY phrase is specified, the execution of a
Format-1 READ statement updates the contents of the RELATIVE
KEY data item such that it contains the relative record number
of the record made available.

Rules for Format 2 (Random and Dynamic Access)

1. Format 2 is used for files in random access mode or for files
in dynamic access mode when records are to be retrieved
randomly.

2. Execution of a Format-2 READ statement causes the value of the
relative key to be compared with the relative position of the
stored records in the file, until the record having the
corresponding record number is found. The current record
pointer is positioned to this record, which is then made
available. If no record can be so identified, the INVALID KEY
condition exists and execution of the READ statement is
unsuccessful.

First Edition

RELATIVE FILES

REWRITE

Function

The REWRITE statement logically replaces a record on a disk file.

Format

REWRITE record-name [FROM data-name]

[; INVALID KEY imperative-statement]

itax Rules

1. The record-name is the name of a logical record in the FILE
section of the DATA division and may be qualified.

2. The INVALID KEY phrase must be specified in random or dynamic
access in the REWRITE statement for files for which an
appropriate USE procedure is not specified.

General Rule

1. The REWRITE statement can change all data fields in the record.

2. The file must be opened for 1-0 for all access methods.

3. A record must have been READ successfully prior to the REWRITE.
This is required to lock the record and ensure that it cannot
be updated by another program running concurrently.

4. The FROM option allows the record to be created in another
area. It is equivalent to MOVE data-name TO record-name prior
to the execution of the REWRITE statement.

5. The number of character positions in the record referenced by
record-name must be equal to the number of character positions
in the record being replaced.

If the associated file is named in a SAME RECORD AREA clause,
the logical record is also available as a record of other files
in the same clause.

First Edition

DOC5039-184

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated. File status is explained with RELATIVE FILE CONCEPTS
at the beginning of this chapter.

For a file accessed in either random or dynamic access mode,
the record specified by the contents of the RELATIVE KEY data
item is replaced. If the file does not contain the record
specified by the key, the INVALID KEY condition exists. The
updating operation does not take place and the data in the
record area is unaffected.

First Edition

■T p ^ ^ p ' f T p r ^ & c l S i S j c i

K is supported syntactically only for compatibility with other CO
lementations.

SEEK file-name RECORD

eral Rules

1. SEEK is treated as documentation in Prime COBOL 74.

2. The file-name must be defined in
the DATA division.

Plrt555r55Sr»ff^f»ySa^Y7^^l^lf'H

First Edition

DOC5039-184

START

Function

The START statement establishes a position in the file for subsequent
READs.

Format

EQUAL TO

NOT LESS THAN
NOT<

[; INVALID KEY imperative-statement]

itax Rules

1. The file-name must be the name of a file with sequential or
dynamic access.

2. The data-name may be qualified but not indexed or subscripted.

3. The INVALID KEY phrase must be specified if no applicable USE
procedure is specified for file-name.

4. The data-name, if used, must be the name in the RELATIVE KEY
clause for this file.

General Rules

1. The file-name must be open in the INPUT or 1-0 mode at the time
that the START statement is executed.

2. If the KEY phrase is not specified, the relational operator IS
EQUAL TO is implied.

3. The current record pointer is positioned to the first logical
record in the file whose key satisfies the comparison.

If the comparison is not satisfied by any record in the file,
an INVALID KEY condition exists, the execution of the START
statement is unsuccessful, and the position of the current
record pointer is undefined.

First Edition

RELATIVE FILES

The execution of the START statement causes the value of the
FILE STATUS data item, if any, associated with file-name to be
updated. FILE STATUS is explained with RELATIVE FILE CONCEPTS
at the beginning of this chapter.

Whether or not the KEY phrase is specified, the comparison uses
the data item referenced by the RELATIVE KEY data-name.

START does not retrieve a record, but only positions to a
desired record.

First Edition

RELATIVE FILES

WRITE

Function

The WRITE statement releases a logical record for an output file.

Format

WRITE record-name [FROM data-name-1]

[; INVALID KEY imperative-statement]

itax Rules

?F*MS^1 mUft S§. 'la© £§£i©

The record-name is the name of a logical record in the FILE
section of the DATA division and may be qualified.

The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file.

General Rules

The associated file must be open in the OUTPUT or 1-0 mode.

rime extensio
statem

ie logical record rele
vailable in the record area.

If the associated file is named in a SAME RECORD AREA clause,
the logical record is also available as a record of other files
referenced in the clause.

Execution of the WRITE statement with the FROM phrase is
equivalent to the statement MOVE data-name-1 TO record-name,
followed by a WRITE statement.

The execution of the WRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated. FILE STATUS is explained with RELATIVE FILE CONCEPTS
at the start of this chapter.

The maximum record size for a file is established at the time
the file template is created. Therefore, record-name and
data-name-1 should not be larger than the record defined to
MIDAS or MIDASPLUS with CREATK.

First Edition

DOC5039-184

Rules for Record Keys

1. When a file is opened for output mode, records may be placed
into the file by one of the following ways:

• If the access mode is sequential, the WRITE statement
will cause a record to be released. The first record
will be given a relative record numbe? of 1 and
subsequent records released will be given relative
record numbers of 2, 3, 4, and so on. If the RELATIVE
K E Y d a t a i t e m h a s b e e n s p e c i fi e d i n t h e
file-control-entry entry for the associated file, the
relative record number of the record just released will
be placed into the RELATIVE KEY data item.

• If the access mode is random or dynamic, prior to the
execution of the WRITE statement, the value of the
RELATIVE KEY data item must be initialized with the
relative record number. That record is then released.

2. The INVALID KEY condition exists under either of the following
circumstances:

• When the access mode is random or dynamic, and the
RELATIVE KEY data item specifies a record that already
ex i s t s .

• When an attempt is made to write beyond the externally
defined boundaries of the file, as when the relative key
value is larger than the number of records allocated
with MIDASPLUS for that file.

First Edition

RELATIVE FILES

EXAMPLE

This program illustrates operations on a relative file in random access
mode. The MIDASPLUS routines needed to create the two relative files
are listed in Appendix E.

ID DIVISION.
PROGRAM-ID. RANDOM2.

* *
REMARKS. THIS PROGRAM ILLUSTRATES READ, WRITE, REWRITE, AND

DELETE FOR A RELATIVE FILE IN RANDOM ACCESS. Tl READS A
TRANSACTION FILE CONTAINING UPDATES FOR MONTHLY BUDGETS,
AND UPDATES A MONTH-FILE WHOSE RELATIVE KEY IS THE NUMBER
OF THE MONTH.

* *
ENVIRCNMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO PFMS,
ORGANIZATION IS RELATIVE,
ACCESS IS RANDOM,
RELATIVE KEY IS KEY-MS,
FILE STATUS IS FS-MS.

SELECT TRANS-FILE ASSIGN TO PFMS,
FILE STATUS IS FS-TR.

r

SELECT NEW-FILE ASSIGN TO PFMS,
ORGANIZATION IS RELATIVE,
ACCESS IS DYNAMIC,
RELATIVE KEY IS KEY-NEW,
FILE STATUS IS FS-NF.

SELECT PRINT-FILE ASSIGN TO PRINTER.
* *
DATA DIVISION.

FILE SECTION.
FD MASTER-FILE COMPRESSED,

LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS KMONTHF.

01 MASTER-RECORD.
05 INFORMATION PIC X(29) .
05 FILLER PIC X(6) .

FD TRANS-FILE COMPRESSED,
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS TMONTHF.

13-27 First Edition

DOC5039-184

TRANS-REODRD.
05 TRANS-CODE
05 TRANS-ENTRY
05 KEY-CODE

PIC X.
PIC X(29)
PIC 99.

FD NEW-FILE COMPRESSED,
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS OUTMONTF.

01 NEW-REOORD PIC X(35).
t
FD PRINT-FILE,

LABEL RECORDS ARE OMITTED.
0 1 P R I N T- L I N E P I C X (3 2) .

WORKING-STORAGE SECTION.
77 FS-MS
77 FS-TR
77 FS-NF
77 KEY-MS
77 KEY-NEW
77 NO-MORE-INPUT
77 KMONTHF
77 TMONTHF
77 OUTMONTF

PIC XX VALUE '00*.
PIC XX VALUE *00'.
PIC XX VALUE '00'.
PIC 9(2) VALUE ZEROES.
PIC 9(2) VALUE ZEROES.
PIC X VALUE 'N'.
PIC X(30) VALUE 'KMONTH'.
PIC X(30) VALUE 'H.ANNE>TMONTH'.
PIC X(30) VALUE 'H.ANNEXXJTMONTH1

* *
PRC)CEDURE DIVISION.

*
DECLARATIVES.
INPUT-ERROR SECTION. USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
FIRST-PARAGRAPH.

DISPLAY '**ERROR: **'.
EXHIBIT FS-MS, FS-TR.
CLOSE TRANS-FILE, MASTER-FILE, NEW-FILE, PRINT-FILE.
STOP RUN.

OUTPUT-ERROR SECTION. USE AFTER STANDARD ERROR PROCEDURE ON
OUTPUT.

SEOOND-PARAGRAPH.
DISPLAY '**ERROR: **'.,
EXHIBIT FS-NF.
STOP RUN.

END DECLARATIVES.
*
000-MAINLINE.

READY TRACE.
PERFORM 050-ACCEPT-FILE-NAMES.
OPEN INPUT TRANS-FILE,

1-0 MASTER-FILE,
OUTPUT NEW-FILE,
OUTPUT PRINT-FILE.

PERFORM 010-UPDATE-MONTHLY-BUDGETS.
CLOSE TRANS-FILE, MASTER-FILE, NEW-FILE, PRINT-FILE.
STOP RUN.

First Edition

RELATIVE FILES

050-ACCEPT-FILE-NAMES.
DISPLAY * ENTER MASTER-FILE — KMONTH OR OTHER'.
ACCEPT KMONTHF.
DISPLAY ' ENTER TRANSACTION FILE — TMONTH OR OTHER' .
ACCEPT TMONTHF.
DISPLAY * ENTER OUTPUT FILE — OUTMONTH OR OTHER*.
ACCEPT OUTMONTF.

k

010-UPDATE-MONTHLY-BUDGETS.
READ TRANS-FILE AT END DISPLAY ' INPUT FILE WAS EMPTY* ,

CLOSE TRANS-FILE, MASTER-FILE, NEW-FILE, PRINT-FILE,
STOP RUN.

PERFORM 020-PROCESS-TRANS UNTIL NO-MORE-INPUT = 'Y' .
020-PROCESS-TRANS.

MOVE KEY-OODE TO KEY-MS.
IF TRANS-CODE = 'U' PERFORM 100-UPDATE

ELSE IF TRANS-CODE = 'A' PERFORM 110-INSERT
ELSE IF TRANS-OODE = 'D* PERFORM 120-DELETE

ELSE EXHIBIT TRANS-RECORD,
PERFORM 200-CREATE-ERROR-FILE.

READ TRANS-FILE AT END DISPLAY 'END OF FILE' ,
MOVE 'Y' TO NO-MORE-INPUT.

it

100-UPDATE.
READ MASTER-FILE INVALID KEY PERFORM 200-CREATE-ERROR-FILE.
IF FS-MS = '00',

REWRITE MASTER-REOORD FROM TRANS-ENTRY,
INVALID KEY DISPLAY ' INVALID KEY*.

k

110-INSERT.
MOVE KEY-OODE TO KEY-MS.
MOVE TRANS-ENTRY TO MASTER-REOORD.
WRITE MASTER-REOORD FROM TRANS-ENTRY,

INVALID KEY PERFORM 200-CREATE-ERROR-FILE.
k

120-DELETE.
READ MASTER-FILE INVALID KEY DISPLAY ' INVALID READ' .
IF FS-MS = '00',
DELETE MASTER-FILE REOORD INVALID KEY

PERFORM 200-CREATE-ERROR-FILE.
k

200-CREATE-ERROR-FILE.
THIS CREATES A RELATIVE FILE. IF THE RECORD ALREADY EXISTS,
TT IS WRITTEN TO A PRINT FILE INSTEAD.

MOVE KEY-OODE TO KEY-NEW.
EXHIBIT NAMED KEY-NEW.
EXHIBIT FS-MS.
WRITE NEW-REOORD INVALID KEY PERFORM 210-PRINT-ERROR.

if

210-PRINT-ERROR.
WRITE PRINT-LINE FROM TRANS-RECORD.

First Edition

DOC5039-184

This program, stored as RELATIVE.CBL, may be compiled, loaded, and
executed with the following dialog. The first and fifth input records
of the file TMONTH cause the program to perform the error routine. End
of file causes MIDASPLUS error 27, but does not abort the program.

CBL RELATIVE
[CBL rev x.x]
OK, SEG -LOAD
[SEG rev x.x]
$ LO RELATIVE
$ LI CBLLIB
$ LI
LOAD COMPLETE
$ EXEC
trace: 050-ACCEPT-FILE-NAMES
ENTER MASTER-FILE — KMONTH OR OTHER
ANNE.K SAMEDI>MIDASPLUS>KMONTH
ENTER TRANSACTION FILE — TMONTH OR OTHER
ANNE.K SAMEDI>MIDAS>TMONTH
ENTER OUTPUT FILE — OUTMONTH OR OTHER
ANNE.K SAMEDI>MTJJAS>OUTMONTH
trace: 010-UPDATE-MONTHLY-BUDGETS
trace: 020-PROCESS-TRANS
TRANS-RECORD = XThis is wrong
tr ace: 20 0-CREATE-ERROR-FILE
KEY-NEW = 1
FS-MS = 00
trace: 020-PROCESS-TRANS
trace: 120-DELETE
trace: 020-PROCESS-TRANS
trace: 100-UPDATE
trace: 020-PROCESS-TRANS
trace: 110-INSERT
trace: 020-PROCESS-TRANS
trace: 100-UPDATE
trace: 200-CREATE-ERROR-FILE
KEY-NEW = 99
FS-MS = 23
End of file. (KX$RAD)

27 MIDAS ERROR
trace: 210-miNT-ERROR
END OF FILE
OK,

Input Files

OK, SLIST MONTHS
This is the January Record 000001
This is the March Record 000003
This is the May Record 000005
This is the June Record 000006
This is the Aug. Record 000008

First Edition

RELATIVE FILES

This is the Sept. Record 000009
This is the October Record 000010

OK, SLIST TMONTH
X T h i s i s w r o n g l
D 0 w
UThis is the September Record 09
AThis is the February Record 02
U l n v a l i d K e y !
OK,

The print-file contains only one line

OK, SLIST PRINT-FILE

Ulnvalid Key
OK,

13-31 First Edition

Tape Files

INTRODUCTION

Structure

Prime computers support nine-track tape with parity checking. Multiple
files on one tape are not supported.

The amount of data that can be put on a tape depends on the following
factors:

• Length of the tape in inches.

• Tape density in bytes per inch (bpi). Prime supports 800 and
1600 bpi.

• The blocking factor. The OOBCL program's BLOCK ODNTAINS clause
of the SELECT statement allows grouping of more than one record
or character into a block. The block is then read from or
written to the tape at once, saving space. If records are not
blocked, each record is followed by an inter record gap or
interblock gap (IRG or IBG) of 1/2 inch minimum. (Exceptions
are discussed in the Magnetic Tape User's Guide.) Blocking
reduces the proportion of tape used by the IRG's. The size of
the block that may be created in blocking is limited only by the
maximum size of the tape buffer.

First Edition

DOC5039-184

The tape buffer size. For unblocked records, buffer size is the
size of one record. Blocked records may occupy a buffer up to
the maximum size. The maximum buffer or block size is listed in
Appendix J.

COMPILING, LOADING, AND EXECUTING PROGRAMS THAT USE TAPE

No special options are needed on the compile line when tape files are
to be processed. The compile line is:

CBL file-name

If special features are desired, use the compile options listed in
Chapter 2.

For loading tape programs, no special libraries or subroutines are
required.

Normal Loading

The source program name should end in .CBL. The normal loading
sequence for a source program with this name format is:

SEG -LOAD
[SEG rev x.x]
$LO program-name (it is not necessary to add .BIN)
$LI CBLLIB
$LI

LOAD COMPLETE

If sort files are to be processed, add the command LI VSRTLI before the
final LI. You must assign the tape drive before you execute the
program.

To run this program, be sure any tape drive assignments are made as
discussed below, then enter:

SEG program-name

First Edition

TAPE FILES

The Older Loading Procedure

An older routine for compiling and loading COBCL 74 programs is
necessary if the object file-name does not end in .BIN. This older
loading routine sequence is:

SEG
[SEG rev. x.x]
#LQ program-name.SEG
$L0 B_f lie-name
$LI CBLLIB
$LI
LOAD COMPLETE

To load subroutines or other object files, use LO file-name after the
main object file (B_file-name) is loaded. If sort files are to be
processed, add LI VSRTLI before the final LI, as explained in Chapter
3.

To run a program prepared in this way, enter:

SEG program-name

Tape Drive Assignments at Execution Time

Tape drives are assigned with the PRIMOS-level command:

AS[SIGN] MTx [-ALIAS MTy]

The value x must represent a physical tape drive from 0 through 7, and
the value y must represent a logical tape drive from 0 through 7. The
drivename in the file assignments presented below must correspond to
the number after ALIAS, if it is used, or else to the number after AS.
See the Magnetic Tape User's Guide, and the example at the end of this
chapter.

The tape drive number in the file assignment and in the PRIMOS
command ASSIGN must be the same. It is, however, independent
of the device-name (MT9) in the SELECT statement.

First Edition

DOC5039-184

FILE ASSIGNMENTS FOR TAPE

File Assignments with Normal 1-0

Normal 1-0 requires that all file assignments be done within the COBCL
program. Use a literal or a data-name in the VALUE OF FILE-ID clause
to give the full tape assignment. If the clause contains a data-name,
this field can then be given a value interactively with the ACCEPT
statement. This technique is particularly helpful for drive numbers
that are not known at compile time. Tape file assignment formats are
given below.

The compiler searches for a tape assignment to associate with each FD
in the following manner:

• If there is no VALUE OF FILE-ID clause for the FD, the compiler
uses the file-name after FD.

• If the VALUE OF FILE-ID clause contains a literal, then all
characters (up to 120) of the literal are used.

• If the VALUE OF FILE-ID clause contains a data-name, then the
complete tape assignment should be contained in the data-name.

Examples are given in the section on VALUE OF FILE-ID below.

File Assignments with -CLD

If the -OLD option is used for compilation, no EXIT PROGRAM statement
is included, and FDs are contained in the runfile, then immediately
following the execute command SEG runfilename or EXECUTE a request is
displayed for runtime file assignments:

ENTER FILE ASSIGNMENTS:
>

For files whose names within the program are incomplete (which includes
all tape files), do the following. Give the literal from the VALUE OF
FILE-ID clause of a FILE DESCRIPTION, followed by an equals sign, the
name of the actual file to be associated with the program file-name,
and a carriage return. The tape file-name format is given below.

If no VALUE OF FILE-ID clause is given for an FD, the compiler
generates names in the series Fl, F2, and so on. These names can then
be used in file assignments in place of the literal.

The system will display the prompt character > while waiting for more
user input. The user should make one entry for each FD whose FILE-ID
is to be reassigned. (All tape files should be reassigned.)

When no file assignments remain to be entered, use the slash mark to
conclude the session. Execution of the application program will then

First Edition

TAPE FILES

begin, using the file assignments as entered. The existence and type
of each file are checked when OPEN is executed for that file.

: File-name Format

To specify the location of a tape file, you must know the drive, the
name of the tape volume, and, for files used as input, the owner-id.
The formats for tape file assignments are:

Normal 1-0 assignment within program:

VALUE OF FILE-ID IS 'drivename, label-type, owner-id,
volume-id'

-CLD runtime assignment:

tapefile=drivename, label-type, owner-id, volume-id

• Assignment within program for either option:

VALUE OF FILE-ID IS data-name

data-name = 'drivename, label-type, owner-id, volume-id'

The elements of these formats have the following properties:

tapefile The literal after VALUE OF FILE-ID in the COBOL
program, if one exists; otherwise Fl, F2, and so
on, or for normal 1-0 the file-name.

drivename $MTx, where x is a drive number from 0 through 7
(0 through 7 if logical drives were assigned as
discussed with the ALIAS option of ASSIGN in the
Magnetic Tape User's Guide).

label-type The type of label:

no label information
standard labels

owner-id A 14-character field. This is called the tape
file-id by LABEL. This is not the same as the
OWNER field in the LABEL command.

volume-id A six-character field that is written in the
label of the tape being created, or is checked if
the tape is being read. This is also called the
volume serial name (VSN).

First Edition

DOC5039-184

Assignment Examples With -CLD

Suppose that in a OOBQL program the following statement existed:
FD TAPE-FILE

LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'FILE2'.

Then an appropriate dialog would be:

ENTER FILE ASSIGNMENTS:
>FILE2 = $MT0, S, MYNAME, Tl

The first response above causes the system to look for magnetic
tape drive 0, with a tape mounted that contains a volume-id of Tl.

Examples using normal 1-0 are given with the VALUE OF FILE-ID
clause below, and with the sample program at the end of this
chapter.

Assignment Error Messages

The following are error messages that may be output by the file
assignment routine.

• BAD DELIMITER

No equals sign is found, or the equals sign is in an unexpected
pos i t i on .

• ILLEGAL SPECIFICATION

The name to the right of the equals sign begins with $ but does not
have the form $MTx.

• LABEL SPECIFICATION EXPECTED

For mag tape, S or N must be specified.

• MTn # OUT OF RANGE

The magnetic tape unit number must be between 0 and 7.

• NAME BUFFER OVERFLOW

The buffer used to store the pathname of the file is full,

First Edition

TAPE FILES

NAME REQUIRED

There is nothing to the right of the equals sign.

NAME TOO LONG

The name to the right of the equals sign is greater than 14
characters for owner-id or greater than six characters for
volume-id.

TAPE FILE-ID EXPECTED

No tape file-id (owner-id) was specified in a tape assignment.

• VOLUME SERIAL NUMBERS MISMATCH

The volume-id in the file assignment does not match the volume
serial number or file-id on the tape label.

• VSN EXPECTED

The volume serial number (volume-id) is missing in a tape
assignment.

MULTTVCLUME TAPE FILES

If a tape file is stored on more than one reel of tape, when the
end of the first reel is detected, this message will be displayed:

**** MTU X END OF VOLUME; MOUNT NEXT VOLUME.
TYPE 'A' TO ABORT, ELSE CORRECT THE PROBLEM AND TYPE RETURN TO
CONTINUE:

Put the tape drive offline, rewind the current tape, mount and load
the next tape in the series, and then put the drive online again.
Press the carriage return to continue execution.

If the wrong reel is mounted, the following message will be
displayed:

FILE SECTION NUMBERS MISMATCH
TYPE 'A' TO ABORT, ELSE CORRECT THE PROBLEM AND TYPE RETURN TO
OONTINUE:

To correct the problem, mount and load the correct tape, put the
drive online, and type S to continue execution.

First Edition

TAPE FILES

ENVIRCNMENT DIVISION

This section discusses only the statements and clauses that are
reserved for tape processing. Other features are presented in
Chapter 6.

Format

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT f OPTIONAL] file-name-1 ASSIGN TO

; RESERVE integer-1
AREA

AREAS

l-O-CONTROL.

RERUN [ON file-name-2]

REEL
END OF

E V E R Y < I O F fi l e - n a m e - 3
[integer-1 RECORDS ,

integer-2 CLOCK-UNITS
condition-name

General Rules

1. The RESERVE clause is for documentation only. Whether or
not it is used, one buffer area will be assigned by the
compiler.

2. The RERUN clause specifies points in the program at which
processing can be restarted in case of premature end of
execution. The clause is for documentation only.

First Edition

TAPE FILES

DATA DIVISION

This section discusses only features that are unique to tape.
DATA division elements are presented in Chapter 7.

Other

Format

FILE SECTION.

FD file-name
COMPRESSED

UNCOMPRESSED

; BLOCK CONTAINS [integer-1 TO] integer-2
RECORDS

CHARACTERS

[; RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

;LABEL
RECORD IS

RECORDS ARE OMITTED

STANDARD

f RECORD IS]
; DATA \ \ data-name-3 [, data-name-4]

RECORDS ARE

[; CODE-SET IS alphabet-name]

;VALUE OF
FILE-ID

VOL-ID

[record-description-entry]

data-name-1

literal-1

[WORKING-STORAGE SECTION.]

(See Chapter 7.)

[LINKAGE SECTION.]

(See Chapter 9.)

First Edition

DOC5039-184

BLOCK CONTAINS

Function

The BIOCK CONTAINS clause specifies the size of a physical record,

Format

BLOCK CONTAINS [integer-1 TO] integer-2
RECORDS

CHARACTERS

itax Rules

1. The BLOCK CONTAINS clause is optional.

be used in coi.
equire blc

General Rules

1. For an input file, the BLOCK CONTAINS clause must describe the
blocking of the records when they were created.

2. The clause may be omitted if the physical record (block)
contains one, and only one, complete logical record.

3. If this clause is omitted, records are treated as unblocked.

4. When the RECORDS option is used, the compiler assumes that the
block size provides for integer-2 records of the maximum size
shown for the file and then provides additional space for any
required control words.

5. When the word CHARACTERS is used, the physical record size is
specified in terms of the number of character positions
required to store the physical record, regardless of the types
of characters used to represent the items within the physical
record.

6. When neither the CHARACTERS nor the RECORDS option is
specified, the CHARACTERS option is assumed.

7. When both integer-1 and integer-2 are used, integer-1 is for
documentation purposes only.

8. The maximum size of a block is listed in Appendix J.

First Edition

TAPE FILES

Blocking Strategy

Often it is efficient to block records in the largest groups possible.
Blocking saves space on the tape because, instead of a 1/2-inch gap
after each record, there will be a 1/2-inch gap only after each block
of records. Blocking also saves time because only one 1-0 operation is
done per block of records, instead of one operation per record.

The saving of space and, therefore, time is illustrated by Figure 14-1.

Unblocked Records

Blocked Records (Blocking Factor of 5)

Blocking Strategy
(Vertical Lines Represent Interrecord Gap)

Figure 14-1

First Edition

DOC5039-184

CODE-SET

Function

The OODE-SET clause specifies the character
i on the ta

used to represent

Format

CODE-SET IS alphabet-name

TAPE FILES

VALUE OF FILE-ID

Function

The VALUE OF FILE-ID clause associates the internal file-name with an
external file, thus allowing for the linkage of internal and external
program names.

Format

VALUE OF
FILE-ID

VOL-ID

data-name-1

literal-1

General Rules

The literal is an alphanumeric literal that may not exceed 120
characters (eight characters with -CLD).

The data-name must be in the WORKING-STORAGE SECTION. It may
be qualified, but it must not be subscripted, indexed, or
described with USAGE IS INDEX.

The VALUE OF FILE-ID clause may be overridden at runtime, if
the -OLD compile switch is used, as explained in the section
File Assignment, with -OLD earlier in Chapter 14.

If there is no VALUE OF FILE-ID clause, a file-name is selected
by the compiler according to the processes described in File
Assignments with Normal 1-0 or File Assignments with -CLD
above.

VOL-ID is reserved for future implementation.

For the correct format of the literal or of the contents of the
data-name, see Tape File Assignment Format at the start of this
chapter.

Examples
A tape file named FILEX can be associated with a logical OOBOL file
named TEST-FILE in any of the following ways.

First Edition

DOC5039-184

Value is literal (Normal 1-0 only):

FD TEST-FILE
LABEL RECORDS STANDARD
VALUE OF FILE-ID '$MT0, S, MYUFD, FILEX1.

At execution time, Normal 1-0 will simply use FILEX on tape
drive 0.

Value is data-name:

FD TEST-FILE
LABEL REOORDS STANDARD
VALUE OF FILE-ID IS TFILE-NAME.

WORKING-STORAGE SECTION.
7 7 T F I L E - N A M E P I C X (2 0) .

An actual file-name can be associated with the logical
file-name TEST-FILE by executing COBCL statements. For
example:

IF NEW-FILE = 1
MOVE *$MT0, S, MYUFD, FILEX' TO TFILE-NAME,

ELSE
MOVE *$MT1, S, MYUFD, FILEY' TO TFILE-NAME.

Another way to do it could be:

MOVE SPACES TO TFILE-NAME
DISPLAY "ENTER TEST-FILE NAME."
ACCEPT TFILE-NAME.

Then, when the request ENTER TEST-FILE NAME is displayed under
either 1-0 system, enter a name such as $MT0, S, MYUFD, FILEX.

3. With -OLD, if VALUE IS literal is used, the user enters a file
assignment at execution time:

FD TEST-FILE
LABEL REOORDS ARE STANDARD
VALUE OF FILE-ID IS 'MYTAPE'.

>MYTAPE = $MT0, S, MYUFD, FILEX

First Edition

TAPE FILES

This section discusses features that are used only for tape processing.
A complete presentation of procedural statements is in Chapter 8.

Tape files may be processed only with sequential l-O. Therefore,
DELETE, START, REWRITE, and any clauses that are appropriate only for
indexed or relative files cannot be used with tape files.

CLOSE

Function

CLOSE terminates the processing of files,

Format

CLOSE file-name-1 [,file-name-2]

ntax Rule

The files referenced in the CLOSE statement need not all have the same
organization or access.

General Rules

1. A CLOSE statement implies a preceding OPEN on the same file.

2. If a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, unless an
intervening OPEN statement for that file is executed.

3. Following the successful execution of a CLOSE statement the
record area associated with file-name is no longer available.
The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area undefined.

4. When standard magnetic tape labels are used, the tape will
automatically rewind after a CLOSE statement. With nonstandard
labels the tape will stay positioned to the end of the file.

First Edition

DOC5039-184

OPEN

Function

OPEN initiates the processing of files and performs checking and
writing of labels.

Format

OPEN J INPUT fNe-name-1 [, file-name-2] —
OUTPUT file-name-3 [, file-name-4]

Syntax Rule

The files referenced in the OPEN statement need not all have the same
organization or access.

General Rules

1. The successful execution of an OPEN statement determines the
availability of the file, results in the file being in an open
mode, and makes the associated record area available to the
program. Prior to the successful execution of an OPEN
statement for a given file, no statement can be executed that
references that file.

2. A file may be opened with the INPUT, OUTPUT, EXTEND, and 1-0
phrases in the same program. Following the initial execution
of an OPEN statement for a file, each subsequent OPEN statement
for that same file must be preceded by the execution of a CLOSE
statement for that file.

3. Execution of the OPEN statement does not obtain or release the
first data record.

4. If label records are specified for the file, the beginning
labels are processed as follows:

• When the INPUT phrase is specified, the execution of the
OPEN statement causes the labels to be checked against
the file assignments.

• When the OUTPUT phrase is specified, the execution of
the OPEN statement causes the labels to be written as
specified in the file assignments.

First Edition

TAPE FILES

5. The file-description-entry for file-name-1, file-name-2,
file-name-5, or file-name-6 must be equivalent to that used
when this file was created, including blocking of records.

6. For files being opened with the INPUT phrase, the OPEN
statement sets the current record pointer to the first record
currently existing within the file. If no records exist in the
file, the current record pointer is set such that the next
executed READ statement for the file will result in an AT END
condition.

7. Upon successful execution of an OPEN statement with the CUTPUT
phrase specified, a file is created. At that time the
associated file contains no data records.

First Edition

DOC5039-184

READ

Function

READ releases a record from the tape buffer to the program.

Format

READ file-name RECORD [INTO data-name-1]

[; AT END imperative-statement]

The results of a READ from tape are the same as those of a READ from
disk. However, you must know how the records were blocked when they
were written to tape, and must use the BLOCK CONTAINS clause if
necessary to specify the same blocking factor.

To the user, the READ statement appears to read one record at a time
from the tape file. However, a whole block is read from tape at once
and each subsequent READ statement releases one record to the program.

First Edition

TAPE FILES

WRITE

Function

WRITE releases a record to the tape buffer.

Format

WRITE record-name [FROM data-name-1]

The results of a WRITE to tape appear to be the same as those of a
WRITE to disk. However, a WRITE statement actually causes a record to
be released to the tape buffer until a block is filled. The whole
block is then written to the tape.

First Edition

DOC5039-184

OVERVIEW OF THE LABEL COMMAND

PRIMOS has a utility called LABEL which initializes magnetic tapes.
LABEL writes either IBM (nine-track EBCDIC or seven-track BCD) or ANSI
(nine-track ASCII) level-1 volume labels followed by dummy HDRl and
EOF1 labels. LABEL can also be used to read existing VOLl and HDRl
labels.

ANSI labels are written in accordance with the American National
Standards Institute standard ANSI X3.27-1978. IBM labels are written
in accordance with IBM's specifications (IBM manual GC28-6680-5).

Any nonstandard labels such as seven-track ASCII or user-defined labels
cannot be read or written.

USING LABEL

To read existing labels type the command:

LABEL MTn [-TYPE typ]

To write labels type the command:

(-VOLUME)LABEL MTn [-TYPE typ] 1 -VOLID > vol [-OWNER own]
(- V O L)

The arguments have the following meanings:

[-ACCESS ace] [-TNTT]

Is the tape drive where the tape to be labelled is located,
n is a number between 0 and 7. This keyword is required and
must be the first on the command line. It matches the
logical drive number of the ASSIGN statement.

Is the type of label desired:

-TYPE A
-TYPE B
-TYPE E
-TYPE STANDARDJL (or Sl)

9-track ASCII (Default)
7-track BCD (IBM)
9-track EBCDIC (IBM)
9-track ASCII (ANSI)

-TYPE STANDARDl differs from -TYPE A by resetting to
zero the leftmost bit of each character in both the
label and data areas. This option is useful for
transporting tapes between Prime machines and other
vendor's machines.

First Edition

TAPE FILES

Is a one- to 14-character string that uniquely identifies
this tape reel. If fewer than 14 characters are specified,
they are blank-padded on the right. The keywords VOLUME or
VOL may be substituted for the keyword VOLID. This is the
volume-id used with the tape assignment.

Is one to six characters long for ANSI labels, one to ten
characters long for IBM labels . I f fewer than s ix
characters are specified, they are blank-padded on the
right. If this keyword is omitted, the default is the
user's login name. The keyword CWN may be substituted for
the keyword OWNER.

Is a single character defining access to this tape. ACCESS
is not used by Prime software but is included for
completeness. If it is omitted, it is left blank on ANSI
labels. ACCESS is ignored for IBM labels.

Is necessary if the tape is brand new, or if an existing
label is to be written over.

On read operations, LABEL prints out the volume-id and owner-id,
creation date, access (for ANSI tapes only), and other information.

If LABEL successfully writes a label, the message 'LABEL operation was
successful' is displayed.

ERRORS USING LABEL

Improper use of the LABEL command causes an error message to be
printed. These errors are the result of bad syntax in the LABEL
command itself or of a system magnetic tape 1-0 error.

itax Errors

Access ignored for IBM labels (warning only).

This is a warning only — processing continues.

• Duplicate keyword detected.

The same keyword was typed more than once.

• Invalid label type specified.

The label type must be one of the characters A, E, or B,

First Edition

DOC5039-184

Invalid tape unit specified.

Something other than MTO through MT7 was typed.

Label operation aborted.

One of the four immediately preceding errors occurred and LABEL aborts,

Label read was not type x.

The label read was not of the type specified.

No magnetic tape unit specified.

A magnetic tape unit is required.

Owner ID specified is too long.

The owner-id cannot be longer than 14 characters.

Owner ID specified is too long for types B or E.

The owner-id for IBM labels cannot be longer than ten characters.

• The tape drive is not ready and/or on-line.

The tape must be mounted on the drive and loaded, then the ONLINE
button must be pushed.

Unable to read tape label on this tape.

A mag tape read error occurred and the label was not read.

Unable to write tape label on this tape.

A mag tape read error occurred and the label was not written,

Unrecognized keyword. String (CMDL$A).

An invalid keyword (string) appeared on the command line.

First Edition

TAPE FILES

VQL1 label already exists.

ANSI standards prohibit the rewriting of V0L1 labels. Use the -INIT
opt ion.

Volume ID specified is too long.

The volume-id cannot be longer than six characters.

Volume ID was not specified.

For writing labels, a volume-id is required.

'/stem Errors

In the following messages, subr is the name of the magnetic tape
subroutine that reported the error. See the Subroutines Reference
Guide for more information regarding these errors.

Message Cause

MTn NOT ASSIGNED Tape drive must be ASSIGNed before using LABEL

subr EOF END-OF-FILE on the magnetic tape

subr EOT

subr MTNO

subr PERR

subr HERR

subr BADC

END-OF-TAPE

Tape drive is not operational

Parity error on the tape drive

Tape drive hardware error

LABEL improperly called mag tape subroutines

THE HELP FACILITY

The command LABEL -HELP causes LABEL to print out an abbreviated
description of the command on the terminal.

For a complete description of tape labels and their use, refer to the
IBM publication GC28-6680, OS Tape Labels and the ANSI publication
X3.27-1969, American National Standard Magnetic Tape Labels for
Information Interchange.

First Edit ion

DOC5039-184

EXAMPLE

The following example is written to run with normal 1-0.

Source File:
Compiled on:
44 .Wed
Options are:

<OPERSY>ANNE. K>NEWCBL>TAPECASH. CBL
FRI, JUN 11 1982 at 15:29 by: CBL rev 9 06/09/82.09:07:

LISTING OPTIMIZE U(PPER)CASE

IDENTIFICATION DIVISION.
PROGRAM-ID. DISBURSE.
AUTHOR. ANNE LADD.
INSTALLATION. PRIME.
DATE-WRITTEN. SEPTEMBER 20, 1978.
DATE-OOMPILED. 820611.15:29:20.
REMARKS. THIS PROGRAM REPRESENTS THE TAPE PART OF THE

PROGRAM OLDCASH USED AT THE END OF CHAPTERS 5, 6,
7, AND 8. THIS PART OF THE PROGRAM WRITES TOTALS
BY DEPARTMENT TO TAPE.

TO WRITE TAPE REOORDS, ENTER YES FOR TAPE REQUEST.
* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-OONTRQL.

SELECT TAPE-FILE, ASSIGN TO MT9.
* *
DATA DIVISION.

*
FILE SECTION.

*
FD TAPE-FILE,

LABEL RECORD IS STANDARD,
BLOCK CONTAINS 4 REOORDS,
VALUE OF FILE-ID IS TAPENAME,
DATA REOORD IS TAPE-LINE.

TAPE-LINE PIC X(20)

WORKING-STORAGE SECTION.
77 TAPE-CHOICE
77 TAPENAME

VALUE
77 TOTAL!
77 TOTAL2
77 TOTAL3
77 TOTAL4
77 TOTAL5
77 TOTAL6
77 VARIABLE-MONTH

PIC XXX VALUE 'NO '.
PIC X(20)

'$MT0, S, ANNE, Tl'.
PIC S9(9)V99 OOMP-3 VALUE ZERO.
PIC S9(9)V99 OOMP-3 VALUE ZERO.
PIC S9(9)V99 OOMP-3 VALUE ZERO.
PIC S9(9)V99 OOMP-3 VALUE ZERO.
PIC S9(9)V99 OOMP-3 VALUE ZERO.
PIC S9(9)V99 OOMP-3 VALUE ZERO.
PIC X(15) VALUE 'THIS MONTH '

First Edition

TAPE FILES

TAPE OUTPUT
* *
01 TAPE-HEADER.

05 TAPE-MONTH PIC X(15) VALUE SPACES.
0 5 F I L L E R P I C X (5) VA L U E S PA C E S .

01 SAVE-TAPE.
05 SAVE-DATE-TAPE PIC 9(6).
05 SAVE-ACCT-TAPE PIC XXX.
05 SAVE-TOTAL-TAPE PICS9(9)V99 COMP-3.

VALUE SPACES.
VALUE SPACES.

OOMP-3.

PROCEDURE DIVISION.

DECLARATIVES.
TAPE SECTION. USE AFTER ERROR PROCEDURE ON TAPE-FILE.
FIRST-PARAGRAPH.

DISPLAY ***** 1-0 ERROR ON TAPE OUTPUT ***'.
END DECLARATIVES.

001-BEGIN.
READY TRACE.
PERFORM 010-GET-JOBINPO.
PERFORM 030-PROCESS-DETAIL.
PERFORM 050-DEPT-TOTALS.
PERFORM 090-PROCESS-TAPE.
DISPLAY ' END OF RUN' .
STOP RUN.

010-GET-JOBINPO.
*NOT INCLUDED.
*
03 0-PROCESS-DETAIL.

*NOT INCLUDED

050-DEPT-TOTALS.
* *
* MOVE ARBITRARY NUMBERS TO TOTAL!, TOTAL2, ETC.
* *

MOVE 11111111
MOVE 22222222
MOVE 33333333
MOVE 44444444
MOVE 55555555
MOVE 66666666

TO TOTAL!
TO TOTAL2
TO TOTAL3
TO TOTAL4
TO TOTAL5
TO TOTAL6

0 90-PROCESS-TAPE.
DISPLAY ' IS TAPE OUTPUT DESIRED—ENTER YES OR NO' .
ACCEPT TAPE-CHOICE.
IF TAPE-CHOICE = 'yes' OR

TAPE-CHOICE = 'YES' PERFORM 095-WRITE-TAPE THRU
097-VERIFY-TAPE,

ELSE DISPLAY 'NO TAPE'.

14-27 First Edition

DOC5039-184

095-WRITE-TAPE.
OPEN OUTPUT TAPE-FILE.
MOVE VARIABLE-MONTH TO TAPE-MONTH.
WRITE TAPE-LINE FROM TAPE-HEADER.
ACCEPT SAVE-DATE-TAPE FROM DATE.
MOVE '100' TO SAVE-ACCT-TAPE.
MOVE TOTAL1 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1
MOVE '200' TO SAVE-TOTAL-TAPE.
MOVE TOTAL2 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '410' TO SAVE-ACCT-TAPE.
MOVE TOTAL3 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '420' TO SAVE-ACCT-TAPE.
MOVE TOTAL4 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '430' TO SAVE-ACCT-TAPE.
MOVE TOTAL5 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
MOVE '440' TO SAVE-ACCT-TAPE.
MOVE TOTAL6 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE AFTER ADVANCING 1.
CLOSE TAPE-FILE.

097-VERIFY-TAPE.
DISPLAY ' FIRST TAPE REOORD - VERIFICATION ONLY'.
OPEN INPUT TAPE-FILE.
MOVE SPACES TO TAPE-HEADER, SAVE-TAPE.
READ TAPE-FILE INTO TAPE-HEADER.
READ TAPE-FILE INTO SAVE-TAPE.
EXHIBIT SAVE-TOTAL-TAPE.
EXHIBIT SAVE-TAPE.
CLOSE TAPE-FILE.
EXIT.

First Edition

TAPE FILES

The following dialog compiles, loads, and executes the program, stored
as TAPECASH.CBL. When the tape record SAVE-TAPE is displayed for
verification, the part represented by SAVE-TOTAL-TAPE is not displayed
because it is declared as OOMP-3.

CBL TAPECASH -LIST
[CBL rev x]
OK, ASSIGN MTO
Device MTO assigned.
OK, SEG -LOAD
[SEG rev x.x]
$ LQ TAPECASH
$ LI CBLLIB
$ LI
LOAD COMPLETE
$ EXEC
trace: 010-GET-JOBINFO
trace: 03 0-PROCESS-DETAIL
trace: 050-DEPT-TOTALS
trace: 090-PROCESS-TAPE
IS TAPE OUTPUT DESIRED—ENTER YES OR NO
YES
trace: 095-WRITE-TAPE
trace: 097-VERIFY-TAPE
FIRST TAPE REOORD - VERIFICATION ONLY
SAVE-TOTAL-TAPE = 11111111.00
SAVE-TAPE = 820611100

END OF RUN
OK,

First Edition

DOC5039-184

Table A-1
COBOL Symbols

Symbol Functions

PUNCTUATION SYMBOLS — Used to punctuate program entries

. period

comma

; semicolon

1. Terminates entries. Usually required.

2. Signifies the decimal point in numeric
literals, or the comma in European
notat ion.

1. Separates operands or clauses in a series.
Optional.

2. European notation for the decimal point in
numeric literals.

Separates operands or clauses in a series.
Optional.

" quotation mark Encloses nonnumeric literals.

CODING SYMBOLS — Directives to the compiler

* aster isk

/ slash

- hyphen

Denotes an explanatory comment line when
inserted in column 7 of a source program line.

Denotes a skip to the top of a new page during
a source listing, when coded in column 7 of a
source program line.

Denotes a continuation line when coded in
column 7 of a source program line.

ine when compiled without th

First Edition

REFERENCE TABLES

Table A-1 (continued)
COBOL Symbols

Symbol Functions

SIGN SYMBOLS AND UNARY OPERATORS — Used in numeric literals
and arithmetic expressions.

+ p l u s 1 . Sign character in the high-order (leftmost)
position of a numeric literal.

2. Unary opera to r fo r mu l t ip l i ca t ion by
numeric literal +1.

- m i n u s 1 . Sign character in the high-order (leftmost)
position of a numeric literal.

2. Unary opera to r fo r mu l t ip l i ca t ion by
numeric literal -1.

ARITHMETIC SYMBOLS •— Used in arithmetic expressions

+ plus Addi t ion

- minus Subtract ion

* aster isk M u l t i p l i c a t i o n

** double asterisk Exponentiation

= equal Assignment

() parentheses Enclose expressions to control the
sequence in which they are evaluated.

CONDITION SYMBOLS -- Used in conditional test expressions

= equal Denotes "is equal to".

> greater than Denotes "is greater than".

< less than Denotes "is less than".

() parentheses Enclose expressions to control the sequence
in which conditions are evaluated.

First Edition

DOC5039-184

Table A-1 (continued)
OOBOL Symbols

Symbol Functions

EDIT SYMBOLS — Used in picture clauses

. decimal point Inserts a decimal point in the indicated
(insertion position of an edited item,
character)

, comma
(inser t ion
character)

$ dollar sign
(fl o a t i n g
character)

/ slash
(inser t ion
character)

* asterisk
(replacement
character)

+ plus
- minus

(fixed sign
control or
fl o a t i n g
characters)

B (insertion
character)

0 zero
(inser t ion
character)

Z (replacement
character)

Inserts a comma in the indicated position
of an edited item. (May be used in
conjunction with floating characters.)

Floats a dollar sign in an edited item
so that exactly one dollar sign is inserted
immediately to the left of the most significant
nonzero digit in any position where the
symbol is used.

Inserts a slash in the indicated position
of an edited item.

Replaces leading zeros with an asterisk.
Each asterisk represents a digit position
in an edited item.

1. Fixed sign control character in the low-
order (rightmost) position of an edited
item picture. The symbol does not replace
a digit position.

2. Floats a plus or minus character (from
left to right) in an edited item, so that
exactly one plus or minus sign is
developed immediately to the left of the
most significant nonzero digit in any
position where the symbol has been used.

Inserts blanks in the indicated positions
of an edited item.

Inserts zeros in the indicated positions
of an edited item.

Replaces leading zeros with blanks in the
indicated positions of an edited item.

First Edition

REFERENCE TABLES

Table A-1 (continued)
COBOL Symbols

Symbol

(decimal
sca l ing
character)

Functions

Fixed sign control character in the low-
order (rightmost) position of an edited
item picture. It occupies two character
positions in the edited result.

Fixed sign-control character in the low-
order (rightmost) position of an edited
item picture. It occupies two character
positions in the edited result.

Specifies the location of an assumed decimal
point when the point is not within the
number that appears in the associated data item

Positions an assumed decimal point in a
in a field.

First Edition

DOC5039-184

Table A-2
COBOL Reserved Words

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABETIC
ALSO**
ALTER
ALTERNATE
AND
ARE
AREA
AREAS
ASCENDING
ASCII*
ASSIGN
AT
AUTHOR
BEFORE
BLANK
BLOCK
BOTTOM
BY
CALL
CANCEL**
CBL-SUBSCHEMA
CHARACTER
CHARACTERS
CLOCK-UNITS**
CLOSEm&sm-
CBLSWl*

CBLSW7
OOBOL
CODE
OODE-SET
COLLATING
COMMA

COMP
COMPRESSED*
OOMP-1*
GOMP-2*

COMPUTATIONAL
")MPUTATIONAL-l*
MPUTATIO

COMPUTATIO
COMPUTE
CONFIGURATION

CONTAINS
COPY
OORR
CORRESPONDING
COUNT
CURRENCY
DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DEBUGGING**
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAMIC
EBCDIC

Iw fe u l
ELSE
END
END-OF-PAGE**
ENTER
ENVIRCNMENT
EOP**
EQUAL
ERROR
EVERY**
EXCEPTION
EXHIBIT
EXIT
EXTEND
EXTERNAL**
FD
FILE

FILE-OONTROL
FILE-ID*
FILLER
FIRST
FOOTING**
FOR
FROM
GIVING
GO
GOBACK*
GREATER
HEADING**
HIGH-VALUE
HIGH-VALUES
1-0
I-O-CDNTRCL

IDENTIFICATION

INDEX
INDEXED
INITIAL
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID

JUST
JUSTIFIED
KEY
LABEL
LAST
LEADING
LEET
LENGTH
LESS
LINAGE**
LTNAGE-OOUNTER**
LINE
LINES
LINKAGE
LOCK**
LOW-VALUE
LOW-VALUES
MEMORY
MERGE
MODE

First Edition

Table A-2 (continued)
COBOL Reserved Words

REFERENCE TABLES

MODULES**
MOVE
MT7*

MULTIPLE**
MULTIPLY
NAMED
NATIVE
NEGATIVE
NEXT
NO
NOT

NUMBER
NUMERIC
OBJECT-OOMPUTER
OCCURS
OF
OFF
OFFLINE-PRINT***
OMITTED
ON
OPEN
OPTIONAL**
OR
ORGANIZATION
OTHERWISE
OUTPUT
OVERFLOW
OWNER*
OWNER-ID*
PAGE*
PERFORM

HSJS5
PIC
PICTURE
POINTER
POSITION
POSITIVE
PRINTER*
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PUNCH
QUOTE
QUOTES
RANDOM
READ

REOORD
REOORDS
REDEFINES
REEL**
REFERENCES
RELATIVE
RELEASE
taawaasfefc
REMAINDER
REMOVAL**
RENAMES
REPLACING
RERUN**
RESERVE
RESET
RETURN
REVERSED**
REWIND**
REWRITE
RIGHT
ROUNDED
RUN
SAME
SD
SEARCH
SECTION
SECURITY

SEGMENT-LIMIT
SELECT
SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL

SET
SIGN
SIZE
SORT
SORT-MERGE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1

START
STATUS
STOP
STRINa
SUBTRACT
SYNC
SYNCHRONIZED
TABLE
TALLYING
TAPE
TERMINAL
THAN

THROUGH
THRU
TIME
TIMES
TO
TOP

Ufc&WrtJ
TRAILING
UNCOMPRESSED*
UNIT**
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING
VALUE
VALUES
VARYING
vol-:
WHEN
WITH
WORDS**
WORKING-STORAGE
WRITE
ZERO
ZEROES
ZEROS
*

REFERENCE TABLES

ASCII CHARACTER SET AND COLLATING SEQUENCE

The Prime OOBOL collating sequence in Table A-3 conforms to the
American Standard Code for Information Interchange (ASCII) collating
sequence. The following table is arranged in ascending value from top
to bo t tom. Fo r nonpr in t i ng cha rac te rs , t he con t ro l - cha rac te r
combination explained below is included; for printing characters, the
punched-card code is given where available.

Following the chart that lists characters in order of value is a chart
(page A-14) that shows all characters on one page.

PARITY

ASCII is a seven-bit code set. Since each byte in a Prime machine
contains eight bits, the leftmost bit is designated the parity bit, and
is set to 1 (ON) by Prime hardware. This is shown on the second chart
(page A-14).

Prime uses standard ASCII for communications with devices. The
following points are particularly important to Prime usage.

Output parity is normally transmitted as a zero (space) unless
the device requires otherwise, in which case software computes
the transmitted parity. Some controllers (such as MLC) may have
hardware to assist in parity generation.

Input parity is ignored by hardware and by standard software.
Input drivers are responsible for making the parity bit suit the
host software requirements. Some controllers such as MLC may
assist in parity error detection.

The Prime internal standard for the parity bit is 1, that is,
'200 added to the octal value.

KEYBOARD INPUT

Nonprinting characters may be entered into text with the logical escape
character ("), plus the octal value. For example, typing "207 will
enter one character into the text, and this character will cause the
alarm bell to sound on devices with that feature.

Nonprinting characters may also be entered with the CONTROL key plus
the character indicated in the rightmost column of the following table.

First Edition

DOC5039-184

Table A-3 Part I
ASCII Character Set and Collating Sequence

ASCII
Character

LOW-VALUES
NULL Null (2)
SOH Start of

header
STX Start of text
ETX End of text
EOT End of transmit
ENQ End of ID
ACK Acknowledge
BEL Audible alarm
BS Backspace
HT Horizontal tab
LF Line feed (3)
VT Ver t ica l tab
FF Form feed

Carriage (8)
return (4)

) RRS (red
ribbon shift)

BRS (black
ribbon shift)

DLE RCP (relative
copy) (5)

DC1 RHT (relative
horizontal tab)

DC2 HLF (half line
feed)

DC3 RVT (relative
vertical tab) (4

DC4 HLF (half line
feed reverse)

NAK Negative
acknowledgment

SYN Synchronocity
ETB End of trans

mission block
CAN Cancel
EM End of medium
SUB Substitute
ESC Escape
._! File separator
GS Group

separator
RS Record

separator

Prime Representation
Binary Hex Octal Decimal Control (1)

0000 0000
1000 0000
1000 0001

1000 1110

1000 1111

1001 0000

1001 0001

1001 0010

1001 0011

1001 0100

1001 0101

1001 0110
1001 0111

1001 1000
1001 1001
1001 1010
1001 1011
1001 1100
1001 1101

1001 1110

000
200 128
201 129

202 130
203 131
203 132
205 133
206 134
207 135
210 136
211 137
212 138
213 139
214 140
215 141

226 150
227 151

230 152
231 153
232 154
233 155
234 156
235 157

First Edition A- 10

REFERENCE TABLES

Table A-3 Part I (continued)
ASCII Character Set and Collating Sequence

ASCII Prime Representation
C h a r a c t e r | B i n a r y H e x Octal Decimal Card Punch(8)

US Unit separator 1001 1111 S)F 237 159 /s

(space) 1010 0001 I\0 240 160 No Punch
! (exclamation) 1010 0001 /! 241 161 12-8-2
" (2) 1010 0010 IK2 242 162 7-8
(number)(10) 1010 0011 Ifl 243 163 8-3
$ 1010 0100 14̂ 244 164 11-3-8
% 1010 0101 I£ 245 165
& 1010 0110 1£ 246 166
1 (ID 1010 0111 IV7 247 167 5-8
(1010 1000 2\8 250 168 12-5-8
) 1010 1001 I£ 251 169 11-5-8
* 1010 1010 AA 252 170 11-4-8
+ 1010 1011 AB 253 171 12-6-8
, (comma) 1010 1100 AC 254 172 0-3-8
- (minus or 1010 1101 AD 255 173 11

hyphen)
. (period) 1010 1110 AE 256 174 12-3-8
/ (slash) 1010 1111 AF 257 175 0-1
0 (zero) 1011 0000 IHfl 260 176
1 1011 0001 I31 261 177
2 1011 0010 I12 262 178
3 1011 0011 I2 263 179
4 1011 0100 I54 264 180
5 1011 0101 I3 265 181
6 1011 0110 I36 266 182
7 1011 0110 I37 267 183
8 1011 1000 I38 270 184
9 1011 1001 I39 271 185
: (colon) 1011 1010 I3A 272 186 8-2
; (semicolon) 1011 1011 I3B 273 187 11-6-8
< 1011 1100 I3C 274 188 12-4-8
— 1011 1101 I3D 275 189 6-8
> 1011 1110 I3E 276 190 0-6-8
? (12) 1011 1111 I3F 277 191 0-7-8
§ (at) 1100 0000 (:o 300 192 8-4
A 1100 0001 (: i 301 193 12-1
B 1100 0010 (2 302 194 12-2
C 1100 0011 (:3 303 195 12-3
D 1100 0100 (2A 304 196 12-4
E 1100 0101 (5 305 197 12-5
F 1100 0110 <:6 306 198 12-6
G 1100 0111 (:7 307 199 1 2 - 7 I
H 1100 1000 c:8 310 200 12-8
I 1100 1001 (:9 311 201 12-9
J 1100 1010 (2A 312 202 11-1
K 1100 1011 (B 313 203 11-2

First Edition

DOC5039-184

Table A-3 Part I (continued)
ASCII Character Set and Collating Sequence

REFERENCE TABLES

Table A-3 Part I (continued)
ASCII Character Set and Collating Sequence

Prime Representation
Binary Hex Octal Decimal Card Punch(8)

1111 1010 FA 372 250
1111 1011 FB 373 251
1111 1100 FC 374 252
1111 1101 FD 375 253
1111 1110 FE 376 254
1111 1111 FF 377 255

Notes to Table A-3 Part I

1. The symbol here signifies pressing the O0NTRCL key
simultaneously with the character key.

2. FILLER

3. Ignored as terminal input.

4. CR is interpreted as .NL. at the terminal.

5. BREAK at terminal.

6. Next byte specifies number of spaces to insert.

7. Next byte specifies number of lines to insert.

8. Characters with no punched cards code, other than the space,
are not supported for punched card entry.

9. Double quote — erase previous character, unless the user or
system default has been changed.

10. Pound sign in British use.

11. Apostrophe or single quote.

12. Kill current line, unless the user or system default has been
changed.

13. Logical escape or up arrow.

14. Back arrow on some terminals.

15. HIGH-VALUE (rubout or delete is not recognized from
termina l) .

First Edition

DOC5039-184

Table A-3 Part II
ASCII Character Set and Collating Sequence

Control Characters Graphic Characters

Column 0

Row I Hex Bits P000 P001 P010 P011 P100 P101 P110 Pill

N U L D L E S P 0

SOH DCL !

STX DC2

ETX DC3

EOT DC4

ENQ NAK

ACK SYN

BEL ETB

B S C A N (

E M)

L F S U B

V T E S C

C R G S

S O R S

ASCII is a seven-bit code set. Since each byte on a Prime
machine contains eight bits, the leftmost bit is designated the
"parity" bit (P), and is set on ("1") by PRIME hardware. For
example, if the user enters the string "IS" using the PRIME
editor, the resultant two bytes in memory are C 9 D 3
(hexadecimal) or 1100 1001 1101 0011 (binary).

First Edition

REFERENCE TABLES

Table A-4
EBCDIC Character Set and Collating Sequence

EBCDIC Codes
COBOL

Character
Set

. (period)
<

- (minus or
hyphen)

/
, (comma)

(apostrophe)

(quote)

Hexa Punched
decimal Card

4B 12-3-8
4C
4D 12-5-8
4E 12-6-8
5B 11-3-8
5C 11-4-8
5D 11-5-8
5E 11-6-8
3ffl 11

61 0-1
6B 0-3-8
6C
CT?

0-4-8
bh
6F 0-7-8
7D 5-8
7E 6-8
7F 7-8

First Edition

DOC5039-184

Table A-4 (continued)
EBCDIC Character Set and Collating Sequence

EBCDIC Codes
OOBOL

C h a r a c t e r H e x a - P u n c h e d
S e t d e c i m a l C a r d

A C: i 1 2 - 1
B C2 1 2 - 2
C C3 1 2 - 3
D C% A 1 2 - 4
E C5 1 2 - 5
F C3 6 1 2 - 6
G (1 1 1 2 - 7
H (: 8 1 2 - 8
I (3 1 2 - 9
J I) 1 1 1 - 1
K I) 2 1 1 - 2
L I) 3 1 1 - 3
M I) 4 1 1 - 4
N I) 5 1 1 - 5
0 I) 6 1 1 - 6
P I) 7 1 1 - 7
Q I) 8 1 1 - 8
R I) 9 1 1 - 9
S 13 2 0 - 2
T I2 3 0 - 3
U I3 4 0 - 4
V I3 5 0 - 5
W 13 6 0 - 6
X 13 7 0 - 7
Y I3 8 0 - 8
Z]S 9 0 - 9
0 1? 0 0
1 1
2 I
3 1
4 1
5 1
6 1
-7

? 1 1
? 2 2
? 3 3
? 4 4
? 5 5
? 6 6
? 7 77

8 ! o O
9 ? 9 9

First Edition

REFERENCE TABLES

Table A-5
File Status Codes

Status Code Error Type In te rpre ta t ion

Sequential Files

N O N E S u c c e s s f u l c o m p l e t i o n o f o p e r a t i o n .

END OF FILE End of file reached on READ; file
pointer positioned past logical end
of file.

PERMANENT 1-0
ERROR

Hardware 1-0 error such as data
check, parity error, or transmission
er ror.

PERMANENT 1-0
ERROR

FORMS ERROR

B o u n d a r y v i o l a t i o n : u s e r h a s
at tempted to wr i te beyond the
externally defined boundaries of a
file. Disk space full.

FORMS validation error on a READ.

Relative Files

N O N E S u c c e s s f u l c o m p l e t i o n o f o p e r a t i o n .

END OF FILE End of file encountered during a
READ.

INVALID KEY User has attempted to write beyond
the externally defined boundaries
of the file (disk space full).

INVALID KEY Record a l ready ex is ts in data
subfile; user attempted to add a
record with a nonunique record
number.

INVALID KEY Record not found; no record found
with the specified key value.

I N VA L I D K E Y B o u n d a r y v i o l a t i o n ; u s e r h a s
attempted to read or write beyond
boundaries preallocated by CREATK.

First Edition

DOC5039-184

Table A-5 (continued)
File Status Codes

Status Code Error Type

,J PERMANENT 1-0
ERROR

Interpre ta t ion

Hardware 1-0 error: could be a
parity error, data check, or trans
mission error.

PRIME-DEFINED

PRIME-DEFINED

Locked record; attempt to access a
record already locked by another user
or process.

Unlocked record; REWRITE attempted
without first locking the record with
a READ.

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

MIDAS concurrency error; another
user has deleted the record you were
trying to access.

User has supplied a record size for
a RELATIVE file that does not match
the record size assigned to the file
during template creation.

Relative record number error; user
supplied a record number larger than
the number preallocated by CREATK.

Attempt to do an indexed add to a
direct access file.

PRIME-DEFINED System error ; poss ib ly ser ious.
Verify that error is not due to a
START that encountered a locked
record before calling your System
Analyst.

END OF FILE

INVALID KEY

Indexed Files

Successful completion of operation.

End of fi le reached on READ
operation; file pointer posit ioned
past logical end of file (highest key
value).

Attempt to perform a WRITE that would
create a duplicate primary key entry,
or changing the primary key on a
REWRITE.

First Edition

REFERENCE TABLES

Table A-5 (continued)
File Status Codes

Status Code Error Type

INVALID KEY

SYSTEM 1-0
ERROR

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

In te rp re ta t ion

There is no record in the file with
this key value.

Operation unsuccessful due to an
1-0 error, such as a data check,
parity error, or transmission error.

Record already locked: another user
or process has already locked this
record for update.

Record not locked: a REWRITE
operation was attempted without first
locking the record via a READ
operation.

Attempt to add a duplicate secondary
key value to a secondary index
s u b fi l e t h a t d o e s n o t p e r m i t
dupl icates.

The indexes referred to in the
program do not match those defined
during MIDASPLUS template creation.

MIDAS concurrency error: another
user has just deleted the record
you were trying to access.

Bad record length supplied: the
program has incorrectly specified the
record length (data size) of the
MIDASPLUS file.

S y s t e m e r r o r. Ve r i f y t h a t t h e
program is not seriously flawed
before you call your System Analyst.

First Edition

DOC5039-184

Table A-6
Permissible Input/Output Statements
After OPEN Options and Access Modes

(X Means Permitted)

F i l e
Organization

File Access Procedure
M o d e S t a t e m e n t

OPEN Option in Effect

SEQUENTIAL SEQUENTIAL READ
WRITE
REWRITE

INPUT OUTPUT 1-0 EXTEND

X X
X X X

X

INDEXED SEQUENTIAL READ
WRITE
REWRITE
START
DELETE

X X

X
X X

X

RANDOM READ
WRITE
REWRITE
START
DELETE

X X
X X

x
X

DYNAMIC READ
WRITE
REWRITE
START
DELETE

X X
X X

X
X X

X

RELATIVE SEQUENTIAL READ
WRITE
REWRITE
START
DELETE

X X
X

X
X X

X

RANDOM READ
WRITE
REWRITE
START
DELETE

X X
X X

X

X

DYNAMIC READ
WRITE
REWRITE
START
DELETE

X X
X X

X
X X

X

First Edition

Table A-7
Hexadecimal and Decimal Conversion

REFERENCE TABLES

To convert a hexadecimal or octal number to decimal with one of the
following charts, locate each digit in the correct column position
and add the decimal equivalents of all digits. For example, 6C5 in
hex equals 1,536 +192+5 in decimal, or 1733.

To convert from decimal to hex or octal, locate the largest decimal
value in the table that is still smaller than the number to be
converted. Note the corresponding hex or octal value on the left.
Then subtract that value from your number, and repeat. Each time,
write down the new digit to the right of the last one. For
example, 95 is 80 plus 15, or 5 from the second hex column and F
from the third column; 95 decimal equals 5F in hex.

HEX DEC

0 0
4096
8192

i 12288
[1 6 3 8 4
i 20480
; 24576

28672
I 32768
' 36864

40960
45056
49152

) 53248
57344
61440

DEC HEX
n ^EHM^^^^HPj^^H

256
512
768

1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840

161

HEX DEC

0
1
2
3
4
5
6

0
1
2
3
4
5
6

7
8
9
A
B
C
D
E
F

16°

10
11 !
12
13
14
15

First Edition

DOC5039-184

Table A-8
Octal and Decimal Conversion

See the explanation of this chart on the preceding page.

O C T D E C O C T D E C O C T D E C OCT DEC OCT DEC

1 0 0 IBm'^HeI^I fl F H
| 1 4 0 9 6 1 5 1 2 1 6 4

2 8 1 9 2 2 1 0 2 4 2 1 2 8 16
3 1 2 2 8 8 3 1 5 3 6 3 1 9 2 24
4 1 6 3 8 4 4 2 0 4 8 4 2 5 6 32
5 2 0 4 8 0 5 2 5 6 0 5 3 2 0 E [i]
6 2 4 5 7 6 6 3 0 7 2 6 3 8 4 48

| 7 2 8 6 7 2 7 3 5 8 4 7 4 4 8 56
8 4 83 82 81 8°

Table A-9
Hexadecimal Addition Table

H 1 2 3 4

1 2 3 4 5 10
2 3 4 5 6 10 11
3 4 5 6 7 10 11 12
4 5 6 7 8 WaB 11 12 13
5 6 7 8 9 ■ " ■■ 11 12 13 14
6 7 8 9 A E 9 11 12 13 14 15
7 8 9 A B 10 l l 12 13 14 15 16
8 9 A B C 10 11 12 13 14 15 16 17
9 A B C D 10 11 12 13 14 15 16 17 18
A B C D E p M 11 12 13 14 15 16 17 18 19
B
C

C
D

D
E

E F BPI 11 12 i :3 14
15

15
16

16
17

17
18

18
19

19
1A

1A
I Bmm bmi i i 12 13

D E F 1 0 11 12 13 14 1!5 16 17 18 19 1A I B I C
E F 10 1 1 1 2 13 14 15 i<5 17 18 19 1A I B I C ID
F 10 i 1 9 1 1 14 1 ̂ I fi 18 19 1A I B IC I D I EX d - Z , _ L - J .l*± x~? j . \ j -L

First Edition

REFERENCE TABLES

Table A-10
Decimal Data Type (Overpunch Symbols)

OOBOL operates on five types of decimal data. Table A-10
summarizes the characteristics of each type.

Size of
Decimal
D i g i t

Leading
Separate
Sign

T r a i l i n g
Separate
Sign

Packed
Decimal

Leading
Embedded
Sign

Tr a i l i n g
Embedded
Sign

8 1

4

8

Comments

A plus sign (+) or a space represents a
positive number. Operations generate +.
A minus sign (-) represents a negative
number.

Same as leading separate sign.

Each four bits represent a digit in
binary-coded decimal form. The right
most four bits represent the sign of
the entire decimal field: bit values
1100 = plus, bit values 1101 = niinus.

A single character represents a digit
and the sign of the field. When more
than one character is listed, all will
be recognized but only the first will
be given in the result field.

Embedded sign characters have the
following meaning:

Pos i t i ve

First Edition

Four categories of error messages may be generated when OOBOL programs
are compiled and run. These messages will appear on the screen if the
program is being compiled and run interactively:

• Compile time error messages

• COBOL runtime error messages

• MIDAS or MIDASPLUS runtime error messages

• PRIMOS error messages

COMPILE TIME ERROR MESSAGES

These messages are displayed on the screen. They are also stored in
the file program.CBL.ERROR and inserted after the source listing, if
either of these two files is specified at compile time.

The format of compile time error messages is explained under COMPILER
OUTPUT in Chapter 2. Examples are:

ERROR 262 SEVERITY 1 [OBSERVATION, SEMANTICS]
File NEW-FILE was opened but never accessed.

ERROR 307 SEVERITY 2 LINE 121 COLUMN 15 [WARNING, SEMANTICS]
The initial value for 'FILLER' exceeds the range of values allowed
by the PICTURE or by the default implementation size.

First Edition

DOC5039-184

The initial value may be truncated or unpredictable.

ERROR 28 SEVERITY 3 LINE 64 OOLUMN 43 [FATAL, SEMANTICS]
A closing quotation mark must be followed by ,.;) or by ' '.

ERROR 266 SEVERITY 4
The number of fatal errors detected for this compilation exceeds
the current implementation limit of 100.

COMPILATION ABORTED.

ERROR 229 SEVERITY 3 LINE 137<2> COLUMN 24 [FATAL, SEMANTICS]
"NOFILE" is an undefined data reference.

The compile time error messages are self-explanatory. If a level-4
message is encountered, a recompilation after elimination of all other
error messages will usually eliminate the level-4 message also. If a
level-4 message persists, it will be necessary to consult a Prime
System Analyst.

COBOL RUNTIME ERROR MESSAGES

These messages are displayed when, for example, subroutines called by
OOBCL are unable to do operations such as file l-O. The message, which
is self-explanatory, describes the error, the file involved if any, and
gives the name of the subroutine. An example of a message from
subroutine C$ER is:

SEQUENTIAL WRITE TO RANDOM FILE OPENED IN 1-0 MODE:
FILE-ID: KMONTH OWNER-ID.: (OMITTED) DEVICE: PFMS

FATAL RUN-TIME 1-0 ERROR. (C$ER)

MIDAS OR MIDASPLUS RUNTIME ERROR MESSAGES

These error messages may be displayed when OOBOL programs using indexed
or relative files are executed. The format of the error message is:

MIDAS FILE SYSTEM ERROR nl, FILE STATUS OODE n2
[m e s s a g e]
FILE-ID: filename OWNER-ID:owner DEVICE: device-name
FATAL RUN-TIME 1-0 ERROR (subroutine-name)

First Edition

ERROR MESSAGES

MIDASPLUS errors are explained by number in the MIDAS User's Guide.
The file status code is the same used by COBOL and is explained in
Appendix A of this manual. An example is:

MIDAS FILE SYSTEM ERROR 7, FILE STATUS CODE 23
ATTEMPTED READ FROM UNOPENED FILE:
FILE-ID:KMONTH OWNER-ID: (OMITTED) DEVICE: PFMS
FATAL RUN-TIME 1-0 ERROR (subroutine-name)

PRIMOS ERROR MESSAGES

These messages, generated by PRIMOS, the Prime operating system, are
explained in the Prime User's Guide. An example is:

ERROR: condition POINTER_FAULT$ raised at 4011(3)1011

In this case, a sort program was run without loading VSRTLI.

See also RUNTIME ERROR MESSAGES in Chapter 3.

First Edition

FIPS Levels

As explained in Chapter 2, the OOBOL 74 compiler does Federal
Information Processing (FIPS) syntax-checking if the appropriate option
is included on the compile line. The compiler options for the four
FIPS levels are -FIPS1, -FIPS2, -FIPS3, and -FIPS4. Table C-l shows
the ANSI OOBOL level permitted for each FIPS level. (The difference
between ANSI levels 1 and 2 is marked in the ANSI publication
X3.23-1974, American National Standard Programming Language COBOL.)
Prime extensions are always flagged by this compiler option.

Error messages are displayed on the screen. They are also stored in
the file named program.CBL.ERROR and inserted after the source listing
if these files are specified at compile time. The error messages are
self-explanatory. Examples are:

• Levels 1 and 2:

ERROR 24 SEVERITY 1 LINE 6 COLUMN 8 [OBSERVATION, SEMANTICS]
DATE-COMPILED not allowed on low and low-intermediate FIPS
leve l s .

• All levels:

ERROR 32 SEVERITY 1 LINE 8 OOLUMN
REMARKS is a Prime extension.

8 [OBSERVATION, SEMANTICS]

First Edition

The Debugger
Interface

The symbolic debugger is presented in the Source Level Debugger Guide.
This appendix describes the OOBOL 74 interface to the Debugger, and
restrictions to debugging in COBOL.

OVERVIEW

To use the Debugger with COBOL 74, follow these steps:

1. Compile the program using the -DEBUG option. For example, if
the program to be debugged is OLDCASH.CBL, enter:

CBL OLDCASH -DEBLG

2. Load the program in the usual way:

SEG -LOAD
[seg rev 18.x]
$LO OLDCASH
$LI CBLLIB
$LI
LOAD COMPLETE
$Q

First Edition

DOC5039-184

Invoke the Debugger:

DBG OLDCASH [option-1 [option-2]...]_

If the program was compiled with the default loading steps in
Chapter 3, the source file-name may be used after DBG.
Otherwise the runfilename should be used.

Follow instructions in the the Source Level Debugger Guide.
The following special definitions should be noted:

• procedure-name and program-block-name mean the entire
i

programs would define other procedure-names or
program-block-names.

• labels mean paragraph-names and section-names. For the
Debugger, these names must be preceded by a dollar sign.
Thus, 040-EDIT would be entered as $040-EDIT.

Array elements are referred to by the array-name
followed by the element number within parentheses.
Multiple subscripts are separated by commas. Thus,
element 3 of the array TABLE1 is referred to as
TABLE1(3). Element 3 of the second dimension of TABLE2
would be TABLE2(2,3).

• Elements with the same names must be referred to as:

element-name OF group-name.

There is no way to set a breakpoint on a paragraph-name
that is not unique. Paragraph-names, therefore, may not
be qualified by section-names in breakpoint identifiers.
Instead, set the breakpoint on the first statement in
the paragraph.

DBG will not accept numeric literals longer than 14
d i g i t s .

LET cannot be used with edited data types.

LET cannot be used with an index name or an index data
item.

LINAGE-COUNTER cannot be displayed.

Evaluation of abbreviated conditional expressions is not
supported.

Results of arithmetic operations on scaled binary values
are incorrect if decimal points are not aligned.

First Edition

THE DEBUGGER INTERFACE

• Switches cannot be displayed.

• Assignments are not right-justified to justified data
items.

• Any source line with "D" in column 7 will be executed.

To leave the Debugger, enter <j.

EXAMPLES

This example uses the Debugger to examine data elements of the program
OLDCASH at the end of Chapter 8. It uses three Debugger commands: BRK
to set a breakpoint, the colon (:) to display data values, and LET to
modify data values. Many other Debugger commands are discussed in the
Source Level Debugger Guide.

The Debugger allows the program to present the usual requests for file
assignments. If the program opens files, only C (continue) should be
used after a breakpoint. RESTART may cause the program to attempt to
open files that have not been closed.

OK, DBG OLDCASH

Dbg revision x.x (Date)

> BRK $040-EDIT
> RESTART
trace: 010-GET-JOBINPO
ENTER MONTH (ALPHA)
JUNE, 1982
ENTER JOB CODE
25
trace: 020-NEW-DETAIL-PAGE
trace: 150-NEW-PAGE
trace: 150-NEW-PAGE-EXIT
trace: 03 0-PROCESS-DETAIL
trace: 03 5-READ-AND-PRINT
**** breakpointed at DISBURSE\219 ($040-EDIT)
> : ENTRY-DETAIL
ENTRY-DETAIL. ENTRY-CHECK-NO = '408'
ENTRY-DETAIL. ENTRY-MONTH. ENTRY-MM = 8
ENTRY-DETAIL. ENTRY-MONTH. ENTRY-DD = 1
ENTRY-DETAIL. ENTRY-MONTH. ENTRY-YY = 78
ENTRY-DETAIL. FILLER = ' '
ENTRY-DETAIL.ENTRY-VENDOR = 'ASHTABULA HDWE
ENTRY-DETAIL. ENTRY-ACCT-NO =430
ENTRY-DETAIL. ENTRY-AMOUNT = 354.76
> : TOTALl
TOTAL1 = 0.00
> LET TOTALl = 111.11

First Edition

DOC5039-184

trace: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 03 5-READ-AND-PRINT

**** breakpointed at DISBURSE\219 ($040-EDIT)
> : TOTALl
TOTALl = 111.11
> Q
OK,

The next example illustrates the use of EDITOR commands within the
Debugger environment. The command SRC NAME elicits the program-name of
the program being debugged. The command SRC L PROC causes the editor
to locate the first instance of PROCEDURE. The command SRC P15 causes
the EDITOR to display 15 lines of source code.

OK, DBG OLDCASH

Dbg revision x.x (Date)

> SRC NAME
Source file is "<TPUBS>ANNE.K>NEWCBLX)LDCASH.CBL", based on evaluation
environment.
> SRC L PROC

152: PROCEDURE DIVISION.
> SRC P15

152: PROCEDURE DIVISION.

154: DECLARATIVES.
155: INPUT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON DISK-FILE.
156: FIRST-PARAGRAPH.
157: DISPLAY '**** 1-0 ERROR CN ENTRY: ***'.
158: DISPLAY ENTRY-DETAIL, CLOSE DISK-FILE, PRINT-FILE.
1 5 9 : S T O P R U N .
160: TAPE-ERROR SECTION. USE AFTER ERROR PROCEDURE CN TAPE-FILE.
161: SEOOND-PARAGRAPH.
162: DISPLAY '**** 1-0 ERROR CN TAPE OUTPUT ***'.
163: CLOSE DISK-FILE, PRINT-FILE. STOP RUN.
164: END DECLARATIVES.
1 6 5 : *
166: 001-BBGIN.

First Edition

Creating Indexed and
Relative Files:

The MIDASPLUS
Interface

This appendix provides enough information for a user to create indexed
and relative files with the minimum options needed to do indexed and
relative 1-0 from a COBOL program. To meet this purpose, the appendix
contains elementary instructions for MIDASPLUS (or the older MIDAS)
files, followed by examples of the dialogs and data files needed as
preparation to run the sample programs at the end of Chapters 12 and 13
and the update PTU98. For more information, see the MIDAS User' s
Guide.

Caution

Do not use COBCL 74 with an outdated revision of MIDAS or
MIDASPLUS.

DEFINITIONS

The following terms are used in special ways in this appendix.

• Data file — a nonindexed, nonrelative file of data records.

• Template or template file — a file organized as an array with
the array slots accessible only by indexes. The file may be
empty.

• Indexed file — a template file organized by indexes.

First Edition

DOC5039-184

• Relative file — a template file organized by indexes that
correspond to record numbers.
Direct access file — same as a relative file.

Input file — a data file used to fill a template.

Output file — the template file.
Create a file — create an empty template file.

Fill a file — fill a template with data records.

Build a file — same as fill a file.

As indicated by this list of terms, preparation of a MIDASPLUS file
usually involves two steps. To create an indexed or relative file, a
user must first run an interactive program called CREATK to create a
corresponding MIDASPLUS template for the file. To put records into
that file, use either the KBUILD program or a OOBOL program.

CREATK

CREATK has two dialogs:

The "minimum options" dialog, which lets MIDAS supply default
values for most of the structural parameters needed to build the
template

• The "full options" dialog, which lets the user provide these
parameter values

This appendix discusses only the minimum options dialog, which is
sufficient for setting up either an indexed file or a direct access
file. For the full options dialog, see the MIDAS User's Guide. Full
options include:

A[DD] ADD AN INDEX
D[ATA] CHANGE DATA REOORD SIZE
E[XTEND] CHANGE SEGMENT AND SEGMENT DIRECTORY LENGTH
F[ILE] OPEN A NEW FILE
H[ELP] PRINT THIS SUMMARY
M[ODIFY] MODIFY AN EXISTING SUBFILE
P[RINT] PRINT DESCRIPTOR INFORMATION
Q[UTT] EXIT CREATK
(C R) I M P L I E D Q U I T
S[IZE] DETERMINE THE SIZE OF A FILE
U[SAGE] DISPLAY CURRENT INDEX USAGE
V[ERSION] MIDAS DEFAULTS FOR THIS FILE

First Edition

INDEXED AND RELATIVE FILES

KBUILD

There are at least three ways to build a file. One of these ways, the
KBUILD utility, is documented here. The other methods are:

Application programs

Interactive entry

Offline routines

They are covered as indicated in Table 3-1 of the MIDAS User's Guide.
A quick comparison of these methods is also included there to help you
decide which method is best suited to your needs.

KBUILD's Functions

KBUILD's range of functions is summarized below:

• Adding data to a new (empty) MIDASPLUS file template and
building (adding entries to) the necessary index subfiles from
sorted or unsorted input data.

• Adding new data and index entries to a MIDASPLUS file that
already contains data entries.

• Adding entries from an external data file to a newly created
secondary index subfile that has just been added to an existing
(and previously filled) MIDASPLUS file.

• Converting a field from existing MIDASPLUS data subfile records
to a secondary key field and adding these entries to a new or
already existing secondary index subfile.

CREATK FOR INDEXED FILES

The CREATK Dial«

The following list of prompts from CREATK shows how to build an indexed
file template with minimum options.

Promi Response Remarks

OK,
[CREATK rev x.x]

MINIMUM OPTIONS?

CREATK

Simplest options path,

First Edition

DOC5039-184

Prompt

FILE NAME?

NEW FILE?

DIRECT ACCESS?

isoonse Remarks

thname Enter pathname of indexed
file to be used by the
OOBOL program. Pathnames
are explained in the
Prime User's Guide.

CS For a new template.

Create an indexed file
instead.

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: A,B,D,I,L,orS A

PRIMARY KEY SIZE = :
number

A specifies an ASCII key.
B specifies a bit-string
key.
D specified a double-pre
c i s i o n fl o a t i n g - p o i n t
key.
I specifies a 16-bit or
short integer key.
L specifies a 32-bit or
integer key.
S specifies a single-pre
c i s i o n fl o a t i n g - p o i n t
key.

B number defines the
number of bytes for an
ASCII key or bits for a
bit-string key. W number
defines the number of
halfwords for either kind
of key. For example, if
there are 2 characters in
the key, number should be
16 bits, 2 bytes, or 1
halfword, depending on
the key type. See the
MIDAS User' s Guide, Chap
ter 7, for the maximum
key sizes. For D, four
halfwords are required;
for I, one halfword; for
L and S, two halfwords.

First Edition

INDEXED AND RELATIVE FILES

Prompt

DATA SIZE = :

Response

number

Remarks

number is the number of
ha l fwords fo r a da ta
record, or the record
l e n g t h i n c h a r a c t e r s ,
divided by 2 and rounded.
It includes the key field
for indexed files.

SECONDARY INDEX

Note

The following dialog is repeated for each alternate record key.
The order in which alternate keys are specified to CREATK must
be the same order as that listed for the ALTERNATE KEY clauses
of the SELECT statement of the OOBOL programs.

INDEX NO.? number
or CR

number is the number of
the alternate record key
o r i n d e x . C a r r i a g e
re tu rn (CR) w i l l ex i t
from CREATK, specifying
no alternate indexes.

DUPLICATE KEYS PERMITTED? YES or NO YES allows the data in
th i s key fie ld to be
duplicated. NO indicates
that if the data in the
key field is duplicated
t h e fi l e w i l l n o t b e
updated and the INVALID
K E Y c l a u s e o r t h e
DECLARATIVES section will
be activated.

KEY TYPE:

KEY SIZE =

SECONDARY DATA SIZE = :

A,B,D, I.,L,orS Same as for Primary Key
Type above.

Enter the size of the
number alternate key, determined

in the same way as the
primary key size above.

No data may be entered
for secondary keys. The
response must be 0, which
will return the user to
the prompt INDEX NO.?
above.

First Edition

DOC5039-184

Example
The following is a CREATK sequence for KDISBURS, the file
MASTER-FILE by the sample program at the end of Chapter 12.
has this record description:

01 MASTER-REOORD.
05 ACCT-MS
05 DATE-MS
05 FILLER
05 VENDOR-MS
05 CHECK-MS
05 AMT-MS

PIC X(3).
PIC 9(6) .
PIC X(3).
PIC X(20)
PIC X(3).
PIC 9(7).

The record is 42 characters (21 halfwords) long. The primary key is
ACCT-MS (three bytes). The dialog also creates two alternate keys,
DATE-MS and CHECK-MS, for use with other programs. The alternate keys
are six bytes and three bytes long.

OK, CREATK
[CREATK rev x.x]

MINIMUM OPTIONS? YES

FILE NAME? KDISBURS
NEW FILE? YES
DIRECT ACCESS? NO

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: A
PRIMARY KEY SIZE = : B 3
DATA SIZE = : 21

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: A
KEY SIZE = : B 6
SECONDARY DATA SIZE = : CR

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? YES

First Edition

INDEXED AND RELATIVE FILES

KEY TYPE: A
KEY SIZE = : B 3
SECONDARY DATA SIZE = : CR

INDEX NO.? 0

SETTING FILE LOCK TO N READERS AND N WRITERS
OK,

First Edition

DOC5039-184

KBUILD FOR INDEXED FILES

The KBUILD Dialog

The following dialog assumes that either every field in the input data
file should be written to the output file, or that any unwanted fields
are at the end of the record, so that they are not included in the
record length in the fourth response below.

This dialog adds data to an empty template. To add or change an
existing file, see other KBUILD options in the MIDAS User's Guide.

Remarks

KBUILD

[KBUILD rev.x.x]

SECONDARIES ONLY?

ENTER INPUT FILENAME •thname

To add data by primary or
relative key.

Enter name of nonindexed
fi l e c o n t a i n i n g d a t a
records.

ENTER INPUT REOORD LENGTH
(WORDS) :

number Enter same number used
for DATA SIZE with CREATK
for the template fi le.
This may be longer than
the data record.

INPUT FILE TYPE: COBOL

ENTER NUMBER OF INPUT FILES: number

Specify a OOBQL file.

If more than one data
file is to be used,
filenames must follow
special conventions. See
the MIDAS User's Guide.

ENTER OUTPUT FILENAME: thname Enter pathname of tem
plate file to be used in
the file assignment for
the indexed file — the
template filename created
with CREATK.

ENTER STARTING CHARACTER
POSITION, PRIMARY KEY:

For OOBOL, the primary
k e y m u s t s t a r t i n
position 1.

First Edition

INDEXED AND RELATIVE FILES

Note

The following two questions are repeated for each secondary or
alternate key.

Prompt Remarks

SECONDARY NUMBER: number
or CR

ENTER STARTING CHARACTER
POSITION:

number

Enter number of second
ary keys (no more than in
CREATK for the same
file). Enter a carriage
return to go on to the
next part.

Enter character position
of the start of that key
within the record.

Note

The following dialog is used only once.

IS FILE SORTED? YES or NO Special rules apply to
sorted files — see the
MIDAS User's Guide.

ENTER LOG/ERROR FILE:

ENTER MILESTONE COUNT:

ithname
or CR

number
or CR

If CR is entered, no file
is made and errors are
only displayed on the
screen.

If a number is entered,
KBUILD will display and
log information for every
nth record indexed. The
0 or CR causes first and
last record only to be
documented.

Example

The following is a KBUILD sequence for KDISBURS, the file created in
the CREATK example above. The input data file, DISBURSE, is listed at
the end of Chapter 12. The record is 21 halfwords long. The primary
key must start in position 1. The secondary keys are DATE-MS and
CHECK-MS, starting in positions 4 and 33, respectively.

OK, kbuild
[KBUILD rev x.x]

First Edition

DOC5039-184

SECONDARIES ONLY? no
ENTER INPUT FILENAME: anne>disburse
ENTER INPUT RECORD LENGTH (WORDS) : 21
INPUT FILE TYPE: text
ENTER NUMBER OF INPUT FILES: 1
ENTER OUTPUT FILENAME: anne.f>kdisburs
ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 1
SECONDARY KEY NUMBER: 1
ENTER STARTING CHARACTER POSITION: 4
SECONDARY KEY NUMBER: 2
ENTER STARTING CHARACTER POSITION: 33
SECONDARY KEY NUMBER:
IS FILE SORTED? no
ENTER LOG/ERROR FILE NAME: klog
ENTER MILESTONE COUNT: 10

BUILDING: DATA
DEFERRING: 0, 1

PROCESSING FROM: anne>disburse
O 0 U N T D A T E T I M E C P U M I N

0 06-18-82 09:01:01 0 .000
10 06-18-82 09 :01 :01 0 .002

FIRST BUHD/DEFER PASS COMPLETE.
10 06-18-82 09:01:01 0 .003

DISK MIN TOTAL TM DIFF
0.000 0.000 0.000
0.000 0.002 0.002

0.000 0.003 0.000

SORTING INDEX 0
C O U N T D AT E T I M E C P U M I N D I S K M I N T O TA L T M D I F F

0 0 6 - 1 8 - 8 2 0 9 : 0 1 : 0 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
SORT COMPLETE

1 0 0 6 - 1 8 - 8 2 0 9 : 0 1 : 0 2 0 . 0 0 4 0 . 0 0 1 0 . 0 0 5 0 . 0 0 5

BUILDING INDEX 0
C O U N T D A T E T I M E

0 06-18-82 09:01:02
10 06-18-82 09:01:02

INDEX 0 BUILT
10 06-18-82 09:01:02

CPU MIN
0.000
0.001

0.001

DISK MIN
0.000
0.000

0.000

TOTAL TM
0.000
0.001

0.001

DIFF
0.000
0.001

0.001

SORTING INDEX 1
C O U N T D AT E T I M E C P U M I N D I S K M I N T O TA L T M D I F F

0 0 6 - 1 8 - 8 2 0 9 : 0 1 : 0 3 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
SORT COMPLETE

1 0 0 6 - 1 8 - 8 2 0 9 : 0 1 : 0 3 0 . 0 0 4 0 . 0 0 0 0 . 0 0 4 0 . 0 0 4

BUILDING INDEX 1
COUNT DATE TIME CPU MIN DISK MIN TOTAL TM DIFF

0 0 6 - 1 8 - 8 2 0 9 : 0 1 : 0 3 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
1 0 0 6 - 1 8 - 8 2 0 9 : 0 1 : 0 3 0 . 0 0 1 0 . 0 0 0 0 . 0 0 1 0 . 0 0 1

INDEX 1 BUILT
1 0 0 6 - 1 8 - 8 2 0 9 : 0 1 : 0 4 0 . 0 0 2 0 . 0 0 0 0 . 0 0 2 0 . 0 0 1

KBUILD COMPLETE.

First Edition

INDEXED AND RELATIVE FILES

CREATK FOR RELATIVE FILES

MIDASPLUS treats the relative key as a primary key. However, the
character spaces allotted for the relative key in the CREATK and KBUILD
dialog should not be included in the OOBOL record description — the
key value will automatically be moved to the OOBOL item defined as
RELATIVE KEY. The following requirements for MIDASPLUS direct-access
files should be noted:

The relative key created by CREATK must have a length that is a
multiple of 8 bits, between 8 and 48. The length of the key
determines the number of records that may be in the file.

In keyboard entry, description of l iterals, and all other
operations, the relative key value should be entered with enough
zero-fill to make a six-digit number.

The maximum number of records to be allocated for the file must
be specified when you create the file. The maximum possible is
999,999 if the primary key size is specified as B 48.

> The size and types of keys in OOBQL programs need not be the
same as those in the corresponding MIDASPLUS files.

CREATK Dialog

The following list of prompts shows use of CREATK to create a relative
file with minimum options.

Remarks

OK,
[CREATK rev x.x]

MINIMUM OPTIONS?

FILE NAME?

NEW FILE?

CREATK

'thname

Simplest options path.

P a t h n a m e o f r e l a t i v e
template file to be used
in file assignments.

For a new template.

For a relative file.

First Edition

DOC5039-184

Prompt Response Remarks

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE:

PRIMARY KEY SIZE = :

B is required for COBOL.

The maximum key size for
a relative file is 48
b i t s , s i x cha rac te r s
(bytes), or three 16-bit
ha l fwords . Key may
always be specified at
maximum size.

DATA SIZE = : number L e n g t h o f r e c o r d i n
characters, divided by 2
and rounded.

NUMBER OF ENTRIES TO ALLOCATE? number Number is the number of
records to allocate in
the new MIDASPLUS file.

SECONDARY INDEX

INDEX NO.? No secondary keys are
allowed. This concludes
templa te c rea t ion and
returns to command level.

Example

The following is a CREATK dialog for KMONTH, the master file used in
the sample program at the end of Chapter 13. This template file has a
record description of PIC X(35), so the data size here is 18. There is
one record allotted for each month, so 12 is the maximum number of
entries expected.

OK, creatk
[CREATK rev x.x]

MINIMUM OPTIONS? y_es

FILE NAME? kmonth
NEW FILE? yes
DIRECT ACCESS? yes

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: b
PRIMARY KEY SIZE = : b 48
DATA SIZE = : 18
NUMBER OF ENTRIES TO ALLOCATE? 12

First Edition

INDEXED AND RELATIVE FILES

SECONDARY INDEX

INDEX NO.? CR

SETTING FILE LOCK TO N READERS AND N WRITERS
OK,

KBUILD FOR RELATIVE FILES

The MIDASPLUS system requires that the relative index be included in
the data record, even though COBOL codes the relative key separately
from the record. The index should therefore be put at the end of the
record in the data file.

The KBUILD Dialog

SECONDARIES ONLY?

KBUILD

Remarks

ENTER INPUT FILENAME: ithname Enter name of sequential
data file.

ENTER INPUT REOORD LENGTH
(WORDS) :

number Enter number of character
positions divided by 2,
rounded.

INPUT FILE TYPE: text All OOBCL files are text
fi l e s .

ENTER NUMBER OF INPUT FILES: number If more than one data
file is to be used,
filenames must follow
special conventions. See
the MIDAS User's Guide.

ENTER OUTPUT FILENAME: thname Enter name to be used for
new relative file in file
assignments — the tem
plate filename created
with CREATK.

First Edition

DOC5039-184

Prompt

THE CUTPUT FILE SELECTED IS
A DIRECT ACCESS FILE.
IS THE ENTRY NUMBER SPECIFIED
IN EACH INPUT REOORD
AN ASCII STRING OR A BINARY
(REAL*4) STRING?
(ENTER A OR B):

Response Remarks

All OOBCL files are
ASCII files.

ENTER STARTING CHARACTER
POSITION IN INPUT REOORD:

ENTER ENDING CHARACTER
POSITION IN INPUT REOORD:

number

number

Enter position number
where the record number
begins.

Enter position where the
record number ends.

ENTER STARTING CHARACTER
POSITION, PRIMARY KEY

number Enter same number as
for STARTING CHARACTER
POSITION for input
record above.

SECONDARY KEY NUMBER: 0 or CR No secondary keys are
allowed.

IS FILE SORTED? yes or no Special rules apply to
sorted fi les — see
the MIDAS User's Guide.

ENTER LOG/ERROR FILE NAME: thname
or CR

If CR is entered, no
file is made and errors
are only displayed on
the screen.

ENTER MILESTONE COUNT: number K B U I L D w i l l d i s p l a y
in format ion for every
nth data record put into
the template file.

First Edition

INDEXED AND RELATIVE FILES

Example

The following example uses the template file KMONTH previously created
with CREATK to build a relative file from the sequential file MONTHS,
which is listed at the end of Chapter 13. MONTHS has 35-character
(18-halfword) records with the record number in positions 30-35.

OK, kbuild
[KBUILD rev x.x]

SECONDARIES ONLY? no
ENTER INPUT FILENAME: anne.f>months
ENTER INPUT REOORD LENGTH (WORDS) : 18
INPUT FILE TYPE: text
ENTER NUMBER OF INPUT FILES: 1
ENTER OUTPUT FILENAME: anne.f>kmonth
THE OUTPUT FILE SELECTED IS A DIRECT ACCESS FILE.
IS THE ENTRY NUMBER SPECIFIED IN EACH INPUT REOORD
AN ASCII STRING OR A BINARY (REAL*4) STRING? (ENTER A OR B): a
ENTER STARTING CHARACTER POSITION IN INPUT REOORD: 30
ENTER ENDING CHARACTER POSITION IN INPUT REOORD: 35
ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 30
SECONDARY KEY NUMBER :CR
IS FILE SORTED? no
ENTER LOG/ERROR FILE NAME: klog
ENTER MILESTONE COUNT: 12

BUILDING: DATA
DEFERRING: 0

PROCESSING FROM: anne.f>months
C O U N T D AT E T I M E C P U M I N D I S K M I N T O TA L T M D I F F

0 0 4 - 1 0 - 8 1 1 3 : 3 1 : 4 2 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
FIRST BUILD/lDEFER PASS COMPLETE.

7 0 4 - 1 0 - 8 1 1 3 : 3 1 : 4 4 0 . 0 0 6 0 . 0 0 1 0 . 0 0 7 0 . 0 0 1

SORTING INDEX 0
C O U N T D AT E T I M E C P U M I N D I S K M I N T O TA L T M D I F F

0 0 4 - 1 0 - 8 1 1 3 : 3 1 : 4 4 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
SORT COMPLETE

7 0 4 - 1 0 - 8 1 1 3 : 3 1 : 4 5 0 . 0 0 5 0 . 0 0 2 0 . 0 0 7 0 . 0 0 7

BUILDING INDEX 0
C O U N T D AT E T I M E C P U M I N D I S K M I N T O TA L T M D I F F

0 0 4 - 1 0 - 8 1 1 3 : 3 1 : 4 5 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0
INDEX 0 BUILT

7 0 4 - 1 0 - 8 1 1 3 : 3 1 : 4 6 0 . 0 0 4 0 . 0 0 0 0 . 0 0 4 0 . 0 0 1

KBUILD COMPLETE.

First Edit ion

COBOL 74 Library
Files

To utilize OOBQL 74, you must have the following files available in the
UFDs specified:

UFD File-name

CMDNCO CBL
CMDNCO PL1G
SYSOVL CBLDATA
LIB CBLLIB

or NCBLLIB
PFTNLB
IFTNLB

SYSTEM CB2154-60
CB2161

Function

Shared OOBOL compiler
Shared PL1G compiler
Diagnostic file
Shared COBOL 74 library

Shared FORTRAN library
Nonshared FORTRAN library
Shared library segments
Shared library segments

The OOBOL 74 library (CBLLIB or NCBLLIB) contains the following
subroutines:

C$xxx
C$ADAT
C$ADAY
C$ATIM

C$CA

Routines used by both old and new OOBQL
Returns current date in format YYMMDD
Returns Julian date in format YYDDD
Returns current time in format HHMMSSFF:

H = Hour
M = Minutes
S = Seconds
F = Hundredths of seconds

Closes sequential file

First Edition

DOC5039-184

CCI/CCR
C$CS
CDI/CDR
CER/CER$
CIN/CIN1/N$IN
C$INSP
C$KE
C$0I/C$0R
C$OS
C$PRTN
CRI/CRR
C$RS
CSI/CSR
C$STR1/C$STR2/C$STR3
CSW/CSWO
C$UN
C$UNS1/C$UNS2
CWI/CWR
C$WS
CXI/CXR
C$XS
I$xxx
K$xxx
N$xxx
N$ACLT
N$ANY2

Closes indexed/relative file
Closes sequential file
Deletes record from an indexed/relative file
Error processing
File assignment initialization
INSPECT statement
Updates file status code on an error
Opens indexed/relative file
Opens sequential file
Used with a EXIT PROGRAM to return to caller
Reads indexed/relative file
Reads sequential file
Starts indexed/relative file
STRING statement
Senses switch setting
Unlocks an indexed/relative entry
UNSTRING statement
Writes indexed/relative file
Writes a sequential file
Rewrites indexed/relative file
Rewrites a sequential file
Midas routines
Midas library
COBOL 74 routines
Alphabetic class test
Runtime interface between object program and

system conversion
Interfaces to symbolic debugger
Not used in Rev. 18.4
Miscellaneous conversion routine
Deletes record from an indexed/relative file
Checks file type and actual file (consistency

between file and its FCB)
Checks for magtape (runtime processor for VALUE

OF FILE-ID IS data-name)
File assignment initialization
INSPECT statement processor
Numeric class test
Writes output to terminal
Reads indexed/relative file
Starts indexed/relative file
Sort/Merge util ity
String statement processor
Reads input from terminal
Writes output to user terminal
Unstring statement processor
Writes indexed/relative file
Writes a sequential file
Binary to decimal conversion routine
Decimal to binary conversion routine
Numeric move statement
Rewrites indexed/relative file
Alphanumeric edited move
PL1G library

First Edition

The MAP Option

The following sample listing for a large program includes a map. The
listing includes the names of all data-items, program-name, section and
paragraph headings, with the following information:

LEVEL

SIZE

The level number specified by the user in the DATA
descr ip t ion :

0 is for program, section, and paragraph names.

1 is for data-names in the DATA division.

The size in 16-bit halfwords, unless followed by c
indicating characters.

The memory address in octal notation, unless the
-HEXADDRESS option is used. It may be followed by a
number and a letter. If there is no number, the data
is allocated in the link frame. Otherwise, the data
is in a common block of that number. The common block
names are at the end of the map.

First Edition

DOC5039-184

ATTRIBUTES The first line shows whether the data-name is OOMP-1,
OOMP-2, OOMP-3, INDEX, DISPLAY, BINARY, or US-BINARY.
The US means unsigned. The BINARY attribute
corresponds to OOBOL 74 data types in the following
way:

BINARY-1 16-bit OOMP, PIC 9 through PIC 9(4)

BINARY-2 32-bit OOMP, PIC 9(5) through PIC 9(9)

BINARY-4 64-bit OOMP, PIC 9(10) through PIC 9(18)

For DISPLAY items, the listing shows whether they have
a separate sign or overpunch. It also signals group
items.

The second line shows the line where the item is
declared. It uses an asterisk for a line where the
value of the item is changed.

For items from a copy file, the line number is shown in the format:

where n is the line of the OOPY statement in the main program, and m is
the line number in the copy file.

In addition, at the end of the listing, the amount of 16-bit halfwords
of working storage is given. Working storage is divided into:

• LINK BASE - the link frame space.

> The names of common blocks used. These names are created by the
compiler, and end with a number plus a dollar sign to avoid
possible use in a program.

The program below uses two common blocks, QWTB1$ and QWTB2$,created by
the compiler with a hashing formula based on the program-id.

First Edition

THE MAP OPTION

EXAMPLE

Source File: <MFDXXX>ANNE>SAMPLES>REL2.CBL
Compiled on: WED, APR 06 1983 at 17:56 by: CBL rev 7 03/07/83.23:04
Options are: LISTING OPTIMIZE U(PPER)CASE MAP

IDENTIFICATION DIVISION.
PROGRAM-ID. REL2HUGE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT A-FILE ASSIGN TO MT9
ORGANIZATION IS SEQUENTIAL.

SELECT B-FILE ASSIGN TO PFMS
ORGANIZATION IS SEQUENTIAL.
SELECT C-FILE ASSIGN TO PFMS
ORGANIZATION IS SEQUENTIAL.
SELECT D-FILE ASSIGN TO PFMS
ORGANIZATION IS SEQUENTIAL.
SELECT T-FILE ASSIGN TO PFMS

ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC

REOORD KEY IS T-KEYO
ALTERNATE REOORD KEY IS T-KEY1
ALTERNATE RECORD KEY IS T-KEY2
ALTERNATE REOORD KEY IS T-KEY3
FILE STATUS IS T-FILE-STATUS.

SELECT MIDAS-S-FILE ASSIGN TO PFMS
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
REOORD KEY IS S-KEYO
ALTERNATE RECORD KEY IS S-KEY1 WITH DUPLICATES
ALTERNATE RECORD KEY IS S-KEY2 WITH DUPLICATES
FILE STATUS IS FILE-STATUS.

SELECT REL-1 ASSIGN TO PFMS
ORGANIZATION RELATIVE
ACCESS RANDOM
RELATIVE KEY REL-KEY
FILE STATUS REL-1-STATUS.

DATA DIVISION.
FILE SECTION.
FD A-FILE

LABEL RECORDS STANDARD
VALUE OF FILE-ID IS 'YIKES'.

01 A-REC.
03 ATAB OCCURS 1000.

05 A-ENT PIC X(32) .
FD B-FILE

LABEL RECORDS STANDARD
VALUE OF FILE-ID IS 'B-FILE'.

01 B-REC.

First Edition

DOC5039-184

49 03 ATAB OCCURS 100.
50 05 A-ENT PIC X(314).
51 FD C-FILE
52 LABEL REOORDS STANDARD
53 VALUE OF FILE-ID IS 'C-FILE'.
54 01 C-REC.
55 03 ATAB OCCURS 1000.
56 05 A-ENT PIC X(32) .
57 FD D-FILE
58 LABEL RECORDS STANDARD
59 VALUE OF FILE-ID IS 'D-FILE'.
60 01 D-REC.
61 03 ATAB OCCURS 1000.
62 05 A-ENT PIC X(32) .
63 FD T-FILE
64 LABEL REOORDS ARE STANDARD
65 VALUE OF FILE-ID IS 'TF-FILE1'.
66 01 TREC.
67 0 3 T- K E Y 0 P I C 9 (4) .
68 0 3 F I L L E R P I C X .
69 0 3 T- K E Y 1 P I C 9 (4) .

Mfi*M 03 T-KEY2 PIC 9 (6) .
71 0 3 T- K E Y 3 P I C 9 (2) .
72 0 3 T- D ATA P I C X (3 3) .
73 FD MIDAS-S-FILE
74 LABEL REOORDS ARE STANDARD
75 VALUE OF FILE-ID IS SHORTREC-TREE.
76 01 SHORT-REC.
77 0 3 S - K E Y 0 P I C 9 (5) .
78 03 S-KEY1.
79 05 S-KEY-1-X PIC X.
80 05 S-KEY1-9 PIC 9(6).
81 03 S-KEY2.
82 05 S-KEY2-X PIC X.
83 05 K-KEY2-9 PIC 9(4).
84 0 3 S - D ATA P I C X (3 3) .

K 5 FD REL-1 UNOOMPRESSED
86 LABEL RECORD STANDARD
87 VALUE OF FILE-ID IS REL-1-TREE.
88 01 REOORD-1.
89 02 PRIM-KEY PIC 9(16).
90 02 ALT-KEY1 PIC 9(16).
91 02 ALT-KEY2 PIC 9(16).
92 0 2 F I L L E R P I C X (1 2) .
93 WORKING-STORAGE SECTION.
94 01 SHORTREC-TREE PIC X(40) VALUE
95 01 RTREE.
96 0 3 F I L L E R P I C X .
97 03 REL-1-^TREE PIC X(40) VALUE
98 01 REL-STATUS-STUFF.
99 0 3 F I L L E R P I C X .

100 03 REL-1-STATUS PIC X(2).
101 03 T-FILE-STATUS PIC X(2) .
102 03 FILE-STATUS PIC X(2).

First Edition G-4

THE MAP OPTION

01 REL-KEY-STUFF.
0 3 F I L L E R P I C X .
03 REL-KEY PIC 9(6) .

01 CPU-START P IC X (4) .
0 1 C P U - F I N P I C X (4) .
01 DISK-START PIC X(4) .
0 1 D I S K - F I N P I C X (4) .
01 LOOP-O0UNT PIC S999 OOMP VALUE 100.
PROCEDURE DIVISION.
DECLARATIVES.
DECLARE-1-SECTION SECTION.

USE AFTER ERROR PROCEDURE CN REL-1.
DECLARE-1-P1.

DISPLAY 'IO ERROR ON REL-1'.
DISPLAY 'STATUS = ' REL-1-STATUS.
DISPLAY 'REL-KEY = ' REL-KEY.
CLOSE REL-1.
GO TO ALL-DONE.

END DECLARATIVES.
START-SECTION SECTION.
P I .

DISPLAY 'ENTER RELATIVE FILE PATHNAME'.
ACCEPT REL-1-TREE.
DISPLAY ' ENTER ISAM FILE NAME'.
ACCEPT SHORTREC-TREE.
OPEN INPUT REL-1.
MOVE 0 TO PRIM-KEY.
MOVE 0 TO REL-KEY.
MOVE 0 TO ALT-KEY1.
MOVE 0 TO ALT-KEY2.
DISPLAY 'READ RELATIVE FILE TEST' .
PERFORM READ-1 LOOP-COUNT TIMES.
GO TO CLOSE-FILES.

READ-1.
DISPLAY 'ENTER KEY AS 9(6) ITEM' .
ACCEPT REL-KEY.
READ REL-1 REOORD.
DISPLAY REOORD-1.

CLOSE-FILES.
CLOSE REL-1.

ALL-DONE.
EXIT.

A100-MAIN.
DISPLAY 'READ ISAM FILE TEST. (USING BYTE-ALIGNED KEY)
DISPLAY 'ENTER Q$ TO QUIT'.
OPEN 1-0 MIDAS-S-FILE.

M00-KEEP-GOING.
DISPLAY 'ENTER KEY AS X(7) ITEM'.
ACCEPT S-KEY1.
IF S-KEY1 = 'Q$' THEN GO TO A999-END.
READ MIDAS-S-FILE KEY IS S-KEY1

INVALID KEY
DISPLAY FILE-STATUS.

EXHIBIT SHORT-REC.

First Edition

DOC5039-184

GO TO MOO-KEEP-GOING.
A999-END.

CLOSE MIDAS-S-FILE.
DISPLAY FILE-STATUS.

A200-MAIN.
DISPLAY 'READ ISAM FILE TEST (WORD ALIGNED KEY) '
DISPLAY 'ENTER Q$ TO QUIT'.
OPEN 1-0 MIDAS-S-FILE.

A200-KEEP-GOING.
DISPLAY 'ENTER KEY AS X(5) ITEM'.
ACCEPT S-KEY2.
IF S-KEY2 = 'Q$' THEN GO TO A9999-END.
READ MIDAS-S-FILE KEY IS S-KEY2

INVALID KEY
DISPLAY FILE-STATUS.

EXHIBIT SHORT-REC.
GO TO A200-KEEP-GOING.

A9999-END.
CLOSE MIDAS-S-FILE.
DISPLAY FILE-STATUS.
STOP RUN.

DATA NAMES DECLARED IN REL2HUGE

LEVEL SIZE LOC (OCTAL) ATTRIBUTES

C-FILE

T-FILE

004406

103120

103244

103370

F D 7 7 1 0 3 5 1 4

MIDAS-S-FILE FD

REL-1

A-REC

ATAB

A-ENT

B-REC

103714

104110

32000C 004517

32000C 004517

32C 004517

31400C 000000

FD-FILE
DECLARED ON LINE 9
FD-FILE
DECLARED ON LINE 11
FD-FILE
DECLARED ON LINE 13
FD-FILE
DECLARED ON LINE 15
FD-FILE
DECLARED ON LINE 17
FD-FILE
DECLARED ON LINE 25
FD-FILE
DECLARED ON LINE 32
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 42
ALPHANUMERIC GROUP ITEM
OCCURRING ITEM
DECLARED CW LINE 43
ALPHANUMERIC
DECLARED ON LINE 44
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 48

First Edition

THE MAP OPTION

31400C Cl+000431

314C Cl+000431

32000C 075251

32000C Cl+000431

32C Cl+000431

32000C 000000

32000C C2+000433

32C C2+000433

50C 103631

103631

103633

103633+1C

103635+1C

103640+1C

103641+1C

104025

104025

104027+1C

104027+1C

104030

104033

104033

104033+1C

104035+1C

ALPHANUMERIC GROUP ITEM
OCCURRING ITEM
DECLARED ON LINE 49
ALPHANUMERIC
DECLARED ON LINE 50
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 54
ALPHANUMERIC GROUP ITEM
OCCURRING ITEM
DECLARED ON LINE 55
ALPHANUMERIC
DECLARED ON LINE 56
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 60
ALPHANUMERIC GROUP ITEM
OCCURRING ITEM
DECLARED ON LINE 61
ALPHANUMERIC
DECLARED ON LINE 62
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 66
US-DISPLAY(4,0)
DECLARED ON LINE 67
ALPHANUMERIC
DECLARED ON LINE 68
US-DISPLAY(4,0)
DECLARED ON LINE 69
US-DISPLAY(6,0)
DECLARED ON LINE 70
US-DISPLAY(2,0)
DECLARED ON LINE 71
ALPHANUMERIC
DECLARED ON LINE 72
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 76
US-DISPLAY(5,0)
DECLARED ON LINE 77
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 78
ALPHANUMERIC
DECLARED ON LINE 79
US-DISPLAY(6,0)
DECLARED ON LINE 80
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 81
ALPHANUMERIC
DECLARED ON LINE 82
US-DISPLAY(4,0)
DECLARED CN LINE 83
ALPHANUMERIC

First Edition

DOC5039-184

REOORD-1

PRIM-KEY

ALT-KEY1

ALT-KEY2

FILLER

SHORTREC-TREE 1

RTREE

FILLER

REL-1-TREE 3

REL-STATUS-STUFF

FILLER

REL-1-STATUS 3

T-FILE-STATUS 3

FILE-STATUS

REL-KEY-STUFF 1

FILLER

REL-KEY

CPU-START

CPU-FIN

DISK-START

DISK-FIN

LOOP-COUNT

60C 104222

104222

104232

104242

104252

104317

104343

104343

104343+1C

104370

104370

104370+1C

104371+1C

104372+1C

104374

104374

104374+1C

104400

104402

104404

104406

104410

DECLARED ON LINE 84
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED CN LINE 88
US-DISPLAY(16,0)
DECLARED ON LINE 89
US-DISPLAY(16,0)
DECLARED ON LINE 90
US-DISPLAY(16,0)
DECLARED ON LINE 91
ALPHANUMERIC
DECLARED ON LINE 92
ALPHANUMERIC
DECLARED ON LINE 94
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 95
ALPHANUMERIC
DECLARED ON LINE 96
ALPHANUMERIC
DECLARED ON LINE 97

ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 98
ALPHANUMERIC
DECLARED ON LINE 99
ALPHANUMERIC
DECLARED ON LINE 100
ALPHANUMERIC
DECLARED ON LINE 101
ALPHANUMERIC
DECLARED ON LINE 102
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 103
ALPHANUMERIC
DECLARED ON LINE 104
US-DISPLAY(6,0)
DECLARED ON LINE 105
ALPHANUMERIC
DECLARED ON LINE 106
ALPHANUMERIC
DECLARED ON LINE 107
ALPHANUMERIC
DECLARED ON LINE 108
ALPHANUMERIC
DECLARED ON LINE 109
BINARY-1(10,0)
DECLARED ON LINE 110

PROCEDURE NAMES DEFINED IN REL2HUGE

NAME ATTRIBUTES

DECLARE-1-SECTION SECTION END OF PERFORM RANGE

First Edition

THE MAP OPTION

DECLARE-1-P1

START-SECTION

READ-1

CLOSE-FILES

ALL-DONE

MOO-MAIN

MOO-KEEP-GOING

A999-END

A200-MAIN

A200-KEEP-GOING

A9999-END

DECLARED ON LINE 113
PARAGRAPH
DECLARED ON LINE 115
SECTION
DECLARED ON LINE 122
PARAGRAPH
DECLARED ON LINE 123
PARAGRAPH END OF PERFORM RANGE
DECLARED ON LINE 136
PARAGRAPH
DECLARED ON LINE 141
PARAGRAPH
DECLARED ON LINE 143
PARAGRAPH
DECLARED ON LINE 145
PARAGRAPH
DECLARED ON LINE 149
PARAGRAPH
DECLARED ON LINE 158
PARAGRAPH
DECLARED ON LINE 161
PARAGRAPH
DECLARED ON LINE 165
PARAGRAPH
DECLARED CN LINE 174

PROGRAMS CALLED FROM REL2HUGE

(NONE)

LINK BASE SIZE 34825 HALEWORDS

COMMON (EXTERNAL) AREAS

QWTB1$

QWTB2$

63402 HALEWORDS IN AREA

32001 HALEWORDS IN AREA

DIAGNOSTIC SUMMARY

First Edition

The XREF Option

Listed below is a sample program followed by a cross-reference listing
created with the XREFSORT compile option. The program includes two
COPY statements, one in the WORKING-STORAGE section, and one in the
PROCEDURE division.

The cross listing includes all features provided by the -MAP option.
In addition, it provides a list of all lines where each data-item is
referenced. XREF causes the names in the map to be listed in source
program order. XREFSORT causes the names to be listed in alphanumeric
order. It gives each data-name, followed by:

LEVEL

SIZE

The level-number specified by the user in the DATA
descr ip t ion.

The size in 16-bit halfwords, unless followed by c
indicating characters.

The memory address in octal notation, unless the
-HEXADDRESS option is used, and may be followed by a
two-character code. If there is no number, the data
is allocated in the link frame. Any other number is
the number of the common block at the end of the
l i s t i n g .

First Edition

DOC5039-184

ATTRIBUTES The first line shows whether the data-name is OOMP-1,
COMP-2, OOMP-3, INDEX, DISPLAY, BINARY, or US-BINARY.
The US means unsigned. The BINARY attribute
corresponds to OOBCL 74 data types in the following
way:

BINARY-1 16-bit OOMP, PIC 9 through PIC 9(4)

BINARY-2 32-bit OOMP, PIC 9(5) through PIC 9(9))

BINARY-4 64-bit OOMP, PIC 9(10) through PIC 9(18)

For DISPLAY items, the listing shows whether they have
a separate sign or overpunch. It also signals group
items. The precision of the data items is also shown.

The second line shows the line where the item is
declared and all lines where it is referred to. Line
numbers prefixed with an asterisk indicate destructive
references.

For items from a copy file, the line number is shown in the format:

n<m>

where n is the line of the OOPY statement in the main program, and m is
the line number in the copy file.

EXAMPLE

Source File:
Compiled on:
Options are:

1
2
3
4
5
6
7
8
9

10
< 1>
< 2>
< 3>
< 4>
< 5>
< 6>
< 7>

F i r s t Ed i t i on

<MFDXXX>ANNE>SAMPLES>XREF3. CBL
WED, APR 06 1983 at 17:58 by: CBL rev 7 03/07/83.23:04
LISTING OPTIMIZE XREF U(PPER)CASE MAP MAPSORT

IDENTIFICATION DIVISION.
PROGRAM-ID. XREF3.

* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-OOMPUTER. PRIME.

* *
DATA DIVISION.

COPY 'XREF3.LTB'.
WORKING-STORAGE SECTION.
01 LEADING-SEP PIC S99
01 TRAILING-SEP PIC S99
01 FIXED-DEC PIC S99
01 LEADING-OVP PIC S99
01 TRAIL ING-OVP PIC S99
01 US-DISPLAY PIC S99

OOMP VALUE 51.
OOMP VALUE 52.
OOMP VALUE 4.
OOMP VALUE 54.
OOMP VALUE 55.
COMP VALUE 63.

THE XREF OPTION

< 10>
< 11>
< 12>
< 13>
< 14>
< 15>
< 16>
< 17>
< 18>
< 19>
< 20>

01 INDEX-NAME
01 INDEX-ITEM
01 LS

PIC S99 OOMP VALUE 67.
PIC S99 OOMP VALUE 67.
PIC S9(7)V9(2) LEADING SEPARATE

01 TS

01 C3

VALUE -1234567.89.
PIC S9(7)V9(2) TRAILING SEPARATE

VALUE +9876543.21.
PIC S9(7)V9(2) OOMP-3

VALUE +0.

01 TROP

01 USD

0 1 L O P P I C S 9 (7) V 9 (2) L E A D I N G
VALUE -7654321.98.

01 TROP P IC S9(7)V9(2) TRAIL ING
VALUE +23.45.

0 1 U S D P I C 9 (7) V 9 (2)
VALUE 5544773.32.

01 IND-DATA-ITEM USAGE IS INDEX.
01 TAB.

05 T-ELEMENT PIC 99 OOMP OCCURS 10 INDEXED BY
INDX.

01 FBI PIC S99 OOMP VALUE 32765.
01 FB2 PIC S99999 OOMP VALUE 1234567.
01 FB4 PIC S99999999999 OOMP VALUE 12345678901,
01 USFB1 PIC 99 OOMP VALUE 3000.
01 USFB2 PIC 999999 OOMP VALUE 223344.
01 USFB4 PIC 999999999999999 OOMP

VALUE 123451234512345.
01 CMP1 OOMP-1 VALUE 2345.67E+4.
01 CMP OOMP-2 VALUE -764321.98E+14.
01 SB PIC S9(2)V9(2) OOMP VALUE 76.54.
01 SB2 PIC S9(3)V9(3) COMP VALUE 987.654.
01 SB4 PIC S9(12)V9(4) COMP VALUE -555554444433.1234.
01 P PIC S99 OOMP VALUE ZERO.
01 Q PIC S99 OOMP VALUE ZERO.
01 TY PIC S99 OOMP VALUE ZERO.
01 PVALUE PIC S9 OOMP VALUE 9.
01 QVALUE PIC S9 OOMP VALUE 2.

01 FBI
01 FB2
01 FB4
01 USFB1
01 USFB2
01 USFB4

01 CMP1
01 CMP
01 SB
01 SB2
01 SB4 PIC 1
01 P
01 Q
01 TY
01 PVALUE
01 QVALUE
01 CVAR.

05 CSIZE PIC S9 OOMP VALUE 0.
05 CSTRING PIC X(30) VALUE SPACES.

01 FAKE1
01 FAKE2
01 FAKE3
01 LSA

01 TSA

01 C3A
VALUE +0

01 LOPA

01 TROPA

01 USDA

PIC S9(5) VALUE 000000015.
PIC S9(4)V9(2) VALUE -0000001234.56.
PIC S9(4)V9(2) VALUE +00000001234.56.
PIC S9(7)V9(2) LEADING SEPARATE
VALUE -1234567.89.
PIC S9(7)V9(2) TRAILING SEPARATE

VALUE +9876543.21.
PIC S9(7)V9(2) OOMP-3

PIC S9(7)V9(2) LEADING
VALUE -7654321.98.

PIC S9(7)V9(2) TRAILING
VALUE +23.45.

PIC 9(7)V9(2)

First Edition

DOC5039-184

33.1234.

< lu>
< 11>
< 12>
< 13>
< 14>

VALUE 5544773.32.
01 FB1A PIC S99 OOMP VALUE 32765.
01 FB2A PIC S99999 OOMP VALUE 123567.
01 FB4A PIC S99999999999 OOMP VALUE 12345678901.
01 USFB1A PIC 99 OOMP VALUE 3000.
01 USFB2A PIC 999999 VALUE 223344.
01 USFB4A PIC 999999999999999 VALUE 123451234512345.
01 CMP1A OOMP-1 VALUE 2345.67E+4.
01 CMP2A OOMP-2 VALUE -764321.98E+14.
01 SB1A PIC S9(2)V9(2) OOMP VALUE 76.54.
01 SB2A PIC S9(3)V9(3) COMP VALUE 987.654.
01 SB4A PIC S9(12)V9(4) COMP VALUE -5555544444

* *
PROCEDURE DIVISION.
Sl SECTION.
P I .

MOVE LS TO LSA.
MOVE LS TO TSA.
COPY 'XREF2.LIB'.
MOVE TS TO C3A.
MOVE TS TO LOPA.
MOVE TS TO TROP.
MOVE TS TO USDA.
MOVE TS TO FB1A.
MOVE TS TO FB2A.
MOVE TS TO FB4A.
MOVE TS TO USFB1A.
MOVE TS TO USFB2A.
MOVE TS TO USFB4A.
MOVE TS TO CMP1A.
MOVE TS TO SB1A.
MOVE SB2 TO SB2A.
MOVE SB4 TO SB4A.

First Edition

DATA NAMES DECLARED IN XREF3

THE XREF OPTION

NAME
REF)

LEVEL SIZE LOC (OCTAL)

5 C 0 0 4 3 4 2

CMP1A

CMP2A

CSIZE

CSTRING

CVAR

FB2A

IND-DATA-ITEM 1

INDEX-ITEM

INDEX-NAME

004511

004426

004424

004556

004560

004446

004447

004446

004466

004471

004474

004406

004533

004407

004534

004411

004536

004322

004364

004327

004326

ATTRIBUTES ("*" = DESTRUCTIVE

COMP-3 (9,2)
DECLARED ON LINE 10<14>
COMP-3(9,2)
DECLARED ON LINE 44
REFERENCES: *70<1>
COMP-2(47,0)
DECLARED ON LINE 25
OOMP-1(23,0)
DECLARED ON LINE 24
OOMP-1(23,0)
DECLARED ON LINE 59
REFERENCES: *70<11>
COMP-2(47,0)
DECLARED ON LINE 60
BINARY-1(4,0) COMPILER-ALIGNED
DECLARED ON LINE 35
ALPHANUMERIC
DECLARED ON LINE 36
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 34
TRAILING OVP(5,0)
DECLARED ON LINE 37
TRAILING OVP(6,2)
DECLARED ON LINE 38
TRAILING OVP(6,2)
DECLARED ON LINE 39
BINARY-1(7,0)
DECLARED ON LINE 17
BINARY-1(7,0)
DECLARED ON LINE 53
REFERENCES: *70<5>
BINARY-2(17,0)
DECLARED ON LINE 18
BINARY-2(17,0)
DECLARED ON LINE 54
REFERENCES: *70<6>
BINARY-4(37,0)
DECLARED ON LINE 19
BINARY-4(37,0)
DECLARED ON LINE 55
REFERENCES: *70<7>
BINARY-1(7,0)
DECLARED ON LINE 10<4>
INDEX-DATA-NAME
DECLARED ON LINE 13
BINARY-1(7,0)
DECLARED ON LINE 10<9>
BINARY-1(7,0)

First Edition

DOC5039-184

LEADING-OVP ?

LEADING-SEP

LOPA

PVALUE

QVALUE

SB1A

SB2A

SB4A

T— ELEMENT

TRAIL ING-OVP

TRAIL ING-SEP

TROP

004402

004323

004320

004345

004514

IOC 004330

10C 004477

004441

004444

004442

004445

004432

004564

004433

004565

004435

004567

004370

004370

004324

004321

004352

DECLARED ON LINE 10<8>
INDEX-NAME
DECLARED ON LINE 16
BINARY-1(7,0)
DECLARED ON LINE 10<5>
BINARY-1(7,0)
DECLARED ON LINE 10<2>
LEADING OVP(9,2)
DECLARED ON LINE 10<17>
LEADING OVP(9,2)
DECLARED ON LINE 47
REFERENCES: *70<2>
LEADING SEP(9,2)
DECLARED ON LINE 10<10>
REFERENCES: 68 69
LEADING SEP(9,2)
DECLARED ON LINE 40
REFERENCES: *68
BINARY-1(7,0)
DECLARED ON LINE 29
BINARY-1(4,0)
DECLARED ON LINE 32
BINARY-1(7,0)
DECLARED ON LINE 30
BINARY-1(4,0)
DECLARED ON LINE 33
BINARY-1(14,7)
DECLARED ON LINE 26
BINARY-1(14,7)
DECLARED ON LINE 61
REFERENCES: *70<12>
BINARY-2(20,10)
DECLARED ON LINE 27
REFERENCES: 70<13>
BINARY-2(20,10)
DECLARED ON LINE 62
REFERENCES: *70<13>
BINARY-4(54,14)
DECLARED ON LINE 28
REFERENCES: 70<14>
BINARY-4(54,14)
DECLARED ON LINE 63
REFERENCES: *70<14>
US-BINARY-1(7,0) OCCURRING ITEM
DECLARED ON LINE 15
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 14
BINARY-1(7,0)
DECLARED ON LINE 10<6>
BINARY-1(7,0)
DECLARED ON LINE 10<3>
TRAILING OVP(9,2)
DECLARED ON LINE 10<19>
REFERENCES: *70<3>

First Edition

THE XREF OPTION

US-DISPLAY

USDA

USFB1

USFB1A

USFB2A

USFB4A

004521

IOC 004335

IOC 004504

004443

004325

004357

004526

004415

004542

004416

004543

004420

15C 004546

TRAILING OVP(9,2)
DECLARED ON LINE 49
TRAILING SEP(9,2)
DECLARED ON LINE 10<12>
REFERENCES: 70<1> 70<2> 70<3>
70<4> 70<5> 70<6> 70<7> 70<8>
70<9> 70<10> 70<11> 70<12>
TRAILING SEP(9,2)
DECLARED ON LINE 42
REFERENCES: *69
BINARY-1(7,0)
DECLARED ON LINE 31
BINARY-1(7,0)
DECLARED ON LINE 10<7>
US-DISPLAY(9,2)
DECLARED ON LINE 11
US-DISPLAY(9,2)
DECLARED CN LINE 51
REFERENCES: *70<4>
US-BINARY-1(7,0)
DECLARED ON LINE 20
US-BINARY-1(7,0)
DECLARED ON LINE 56
REFERENCES: *70<8>
US-BINARY-2(20,0)
DECLARED ON LINE 21
US-DISPLAY(6,0)
DECLARED ON LINE 57
REFERENCES: *70<9>
US-BINARY-4(50,0)
DECLARED ON LINE 22
US-DISPLAY(15,0)
DECLARED ON LINE 58
REFERENCES: *70<10>

PROCEDURE NAMES DEFINED IN XREF3

PROGRAMS CALLED FROM XREF3

(NONE)

ATTRIBUTES ("*" = DESTRUCTIVE

PARAGRAPH
DECLARED ON LINE 67
SECTION
DECLARED ON LINE 66

LINK BASE SIZE 2171 HALFWORDS

First Edition

Prime Support of the
ANSI Standard

Module

Nucleus

Features Available in Prime OOBCL 74

Full level 2, with these exceptions:

E, LTNAGE-OOUNTER, PAGE-OOUNTER,
END-OF-PAGE and EDP are not supported.
:NG and UNSTRING cannot have more than five
sending or receiving fields.

SAME AREA is treated as SAME REOORD AREA.
MEMORY SIZE is not supported.

e OPTIONAL attribute is syntax-checked only.
EasBgi rag

Sequential 1-0 Full level 2, with these exceptions:

JN, MULTIPLE FILE, REWIND, REMOVAL,
ERSED, UNIT, and LOCK are not support

Relative 1-0 Full level 2, with minor exceptions required for:

First Edition

DOC5039-184

Indexed 1-0 Full level 2, with minor exceptions required for

Sort-merge Full level 2
or MERGE with the USING opti
pported for tape fil

Library Full level 2

Table Handling Full level 2, with this exception:

Interprogram
Communication Full level 2, with these exceptions:

PRIME EXTENSIONS TO THE ANSI STANDARD

Prime COBOL 74 provides the following extensions to ANSI OOBOL-74:

. i tera ls

wercase interpreted as uppercase except in nonnumeric liter
id in alphabetic class tests

omment lines preceding the IDENTIFICATION DIVISION

) for IDENTIFICATION

lonai paragraphs in the IDENTIFICATION division appearing
ny order

:ional paragra;
>rder

O-OONTROL section appearing in

1RCE-O0MPUTER and OBJECT-COMPUTER not requi

)s and SDs in any order

First Edition

THE ANSI STANDARD

UNOOMPRESSED or COMPRESSED file attribu"

In records, level-numbers greater than 1 appearing 1

Subscripts that may themselves be subscripted

In documentation, the term data-name referring to an item
may be indexed or subscripted

OOMPUTATIONAL-1, OOMPUTATIONAL-2 (OOMP-1, OOMP-2) (flO "
point formats)

COMPUTATIONAL-3 (COMP-3) (packed decimal format)

ALTERNATE REOORD KEY nonnumeric

FILE STATUS as PIC 99 or PIC XX

The RELATIVE KEY clause appearing anywhere in the file-con
en t ry

FILLER used at the group level

COMP with a default PICTURE of S9999

Subscr ip t ing and qua l ifica t ion o f da ta-names l i s ted
subscr ipts

Arithmetic expressions as subscripts

Eight levels of subscripting

Paragraph-names and section-names not required in the PROCEDURE
d i v i s i o n

CORRESPONDING option for IF, MULTIPLY, DIVIDE, COMPUTE

The ROUNDED and SIZE ERROR options for numeric MOVES

Arithmetic expressions after GO TO DEPENDING, IF, MOVE, PERFO
VARYING, SET, in indexing, in subscripting, and in all
arithmetic statements

EXHIBIT NAMED

Y TRACE and RESET TRACE

EEK (checked for syntax only)

L̂ SMW §JH@Ĵ r; ;i®

GOBACK

First Edition

DOC5039-184

DISPLAY .

DISPLAY wi.

THEN and OTHERWISE after IF

Ik&BSS'&l^ ss operands of INSPECT

vf record area undisturbed after REWRITE or WRITE

Arguments of any level number in a CALL statement

Cross reference listing

Map listing

FIPS checking

Subscript range checking

Interface to the Prime Source Level Debugger

PROCEDURE division references to PROGRAM-H) and DATE-OOMPIL

A data-name that redefines another may itself be the object o
REDEFINES clause.

Underscore allowed in data-names

Right margin extended with -RMARGIx

First Edition

Implementation-
dependent Features

of Prime
COBOL 74 in Rev. 18

Maximum Sizes

Unpacked Decimal (DISPLAY) number
Packed Decimal (COMP-3) number
Binary (COMP) number
Floating-point-1 (OOMP-1) value

Mantissa
Floating-point-2 (OOMP-2) value

Mantissa
Index value (max occurrence number)

Index size
WORKING-STORAGE size
Program size (PROCEDURE division)
Table (array) size
Length of data-names and other

programmer-defined words
File name as literal,

including pathname
Program-id
Size of an elementary item
Record size:

in file
in working storage

Block size

36 digits
36 digits
18 digits, default S9999
10E38, minimum 10E-38
7 digits
10E+9823, minimum 10E-9902
14 digits
64K(65,535) if referring to a

two-character item
128K(131,071) if referring to a

one-character item
64 bits
100 128K-byte segments
128K bytes (one segment)
128K bytes (characters)
30 characters

8 characters for -CLD option,
120 characters for normal 1-0
8 characters recognized
64K bytes

64K bytes
128K bytes
32K records (if each record is

only 16 bits)

First Edition

DOC5039-184

Maximum Numbers

Characters in ACCEPT or DISPLAY 25i
Number of subscr ip ts (ar ray 8

dimensions)
Number of secondary keys
Number of files open at once 121

N u m b e r o f fi l e s m e r g e d 2 - ' .
N u m b e r o f fi l e s s o r t e d 1 - :
Number of qualifiers:

f o r p a r a g r a p h - n a m e s 1
for data-names or condition-names 50

Operands of STRING and UNSTRING 5
O p e r a n d s o f U S I N G 6 4

128 (0 and 127 are reserved for
PRIMOS)

2-11
1-20

Other Information

High values
Low values

hex FF
hex 00

First Edition

File Assignments
with-OLD

INTERACTIVE ASSIGNMENTS

If the -OLD option is used for compilation, interactive file
assignments must be made under the following conditions:

• No EXIT PROGRAM statement is included in the program.

» FD's are contained in the runfile.

• The VALUE OF FILE-ID clause for one or more FDs contains a
literal rather than a data-name.

In this case, immediately following the execute command SEG runfilename
or EXECUTE, a request is displayed for runtime file assignments:

ENTER FILE ASSIGNMENTS:
>

For files whose names within the program are incomplete, give the
literal from the VALUE OF FILE-ID clause of a file description,
followed by an equals sign, the name of the actual file to be
associated with the program file-name, and a carriage return:

> name-in-literal = disk-or-tape-name (CR)

The formats for disk and tape file-names are given below.

If file-names and pathnames in the ED entry are complete, simply enter
a slash mark (/) to the request.

First Edition

DOC5039-184

The system will display the prompt character > while waiting for more
user input. The user should make one entry for each FD whose FILE-ID
is to be reassigned. When no file assignments remain to be entered,
use the slash mark to conclude the session. Execution of the
application program will then begin, using the file assignments that
were just entered. The existence and type of each file are checked
when OPEN is executed for that file.

Default Assi<

If a VALUE OF FILE-ID is present and no interactive assignment is made,
then the actual file-name is the name specified in VALUE OF FILE-ID.
If the VALUE OF FILE-ID clause contains a literal, only the first eight
characters are used. This means that unlabelled tape file assignments
cannot be made within the literal. If the clause contains a data-name,
then the file pathname should be assigned to that data-name by the
OOBCL program.

If no VALUE OF FILE-ID clause is present for a file, the compiler
generates output files or searches for input files with the names Fl,
F2, F3, and so on, up to nine files. Different names are generated for
print files as explained below.

Caution

This second method of default assignment is not recommended for
new programs. It is intended only for compatibility with
programs transported from other compilers.

Print files follow a different default naming convention. Files
assigned to the printer are assigned by the OOBQL runtime package to
names consisting of the first four characters of the program-name plus
a two-digit sequence number. The sequence number is 01 the first time
the program is run. It is incremented by one each time the program is
executed, if previous print files still exist. Thus when the program
with program-id DISBURSE is run the first time, the print file is named
DISB01 by default. The second run creates DISB02 if DISB01 still
exists.

FILE-NAME FORMATS EOR DISK AND TAPE

This section gives the proper format for PRIMOS file-names, whether in
a literal or a data-name after VALUE OF FILE-ID, or in the runtime file
assignments.

First Edition

FILE ASSIGNMENTS WITH -OLD

Disk File-Name Format

A pathname for a disk file describes the location of the file in the
directory hierarchy. It consists of an optional partition-name
preceded by the symbol < , followed optionally by the UFD-name followed
by any sub-UFDs, followed by the filename, all separated by the symbol
>. If no UFD is specified, the current UFD is searched. UFDs and
pathnames are explained in the Prime User's Guide.

Pathnames specified in file assignments should not contain spaces. If
a space must be specified in order to include a password, enclose the
entire pathname in quotes.

Examples of pathnames are:

<PART1>C0BCL>FILE2
UFD1>FILE
UFD2>DATA>FILE1
'UED1 PASSWORD>FILE'

The FILE-ID clause may be used in conjunction with the CWNER IS clause
(Chapter 7). In this case, the FILE-ID must be followed by a literal.
If both FILE-ID IS literal-2 and OWNER IS literal-1 are used, the
pathname sought is literal-l>literal-2.

lent Format

To specify the location of a tape file, you must know the drive, the
name of the tape volume, and, for files used as input, the owner-id.
The format for a tape file assignment is:

drivename, label-type, owner-id, volume-id

drivename $MTx, where x is a drive number from 0 through 7
(0 through 7 if logical drives were assigned)

label-type no label information
standard labels

owner-id A 14-character field. This is also called the
tape file-id.

volume-id A six-character field that is written in the
label of the tape being created, or is checked if
the tape is being read. This is also called the
volume serial number (VSN).

Chapter 14 discusses tape files more thoroughly.

First Edition

DOC5039-184

Assignment Examples for -OLD

With -OLD, files on disk or tape can be associated with FDs in the
program either by runtime file assignments or by COBOL statements
within the program:

• Suppose that in a COBCL program the following statements
existed:

FD DISK-FILE
LABEL REOORDS ARE STANDARD
VALUE OF FILE-ID IS 'FILEl'.

ED TAPE-FILE
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'FILE2'.

Then an appropriate runtime dialog would be:

ENTER FILE ASSIGNMENTS:
>F1LE1 = MYUFD>DATA>DISBURSE
>FILE2 = ?MT0, S, MYNAME, Tl

The first response causes PRIMOS to search a UFD called
MYUFD>DATA for a disk file called DISBURSE to use as DISK-FILE
in the program.

You must assign the tape drive (with the PRIMOS ASSIGN
statement) before you execute the program. The second response
above assumes that a tape drive has been assigned as logical
drive 0, with a tape mounted that contains a volume-id of Tl
and an owner-id of MYNAME.

Within the program, a PFMS file named FILEX can be associated
with a logical COBOL file named TEST-FILE in either of the
following ways.

1. Value is literal:

FD TEST-FILE
LABEL REOORDS STANDARD
VALUE OF FILE-ID 'FILEX'.

At execution time, in answer to the -OLD request for
file assignments, enter a slash. (For normal l-O, no
such action is necessary.)

First Edition

FILE ASSIGNMENTS WITH -OLD

2. Value is data-name:

FD TEST-FILE
LABEL REOORDS STANDARD
VALUE OF FILE-ID IS TFILE-NAME.

WORKING-STORAGE SECTION.
7 7 T F I L E - N A M E P I C X (2 4) .

An actual file-name can be associated with the logical
file-name TEST-FILE by executing COBOL statements_or_by
adding a VALUE clause to the level-77 description
above.

First Edition

Conversion
Incompatibilities

With Prime's Older
COBOL: Rev. 18.4

and Higher

ENVIRCNMENT DIVISION

OOBOL 74 requires the INPUT-OUTPUT section header if the contents of
the section are present.

REOORD KEY names must be unique, independently of qualification.

DATA DIVISION

Files that are produced by the EDITOR or by old COBOL must be
identified with the COMPRESSED clause in OOBOL 74. Otherwise, the
program will appear to run, but the file will not be read correctly.

In COBOL 74, the size of a data item with COMP usage may be 16, 32, or
64 bits, as determined by its PICTURE clause. The default is 16 bits,
which is the only option for old OOBCL.

In COBOL 74, LOW-VALUES is always treated as alphanumeric.

LOW-VALUES is octal 000 in OOBCL 74.

In OOBOL 74, only WORKING-STORAGE items with an explicit VALUE clause
are initialized.

OOBQL 74 inserts filler as needed to make items align on their required
boundaries and aligns structures on the largest boundary of any item
contained in the structure. See DATA REPRESENTATION AND ALIGNMENT in
Chapter 4. A warning message is issued.

First Edition

DOC5039-184

An item described with BLANK WHEN ZERO may not have an asterisk in its
PICTURE clause in OOBQL 74.

LINKAGE SECTION items referenced in the program must appear in the
PROCEDURE DIVISION USING header or be subordinate to items in that
header.

OTHER

No listing file is created by OOBOL 74 unless one is specified on the
command line.

OOBQL 74 requires -OLD in the compile line for programs written for old
COBOL that need file reassignment at runtime.

For continuation of nonnumeric literals, OOBCL 74 requires a dash in
column 7.

First Edition

Glossary

• Mphabet-name

A programmer-defined word in the SPECIAL-NAMES paragraph of the
ENVIRONMENT division that assigns a name to a specific character set or
collating sequence.

Arithmetic Expression (Arith-expr)

A numeric data-name, a numeric literal, such data-names and literals
separated by arithmetic operators, two arithmetic expressions separated
by an arithmetic operator, or an arithmetic expression enclosed in
parentheses. Any arithmetic expression may be preceded by a unary
operator.

• Assumed Decimal Point

A decimal point position that does not involve the existence of an
actual character in a data item. The assumed decimal point has logical
meaning but no physical representation.

First Edition

DOC5039-184

• AT END Condition

A condition caused:

1. During the execution of a READ statement for a sequentially
accessed file.

2. During the execution of a RETURN statement, when no next
logical record exists for the associated sort or merge file.

3. During the execution of a SEARCH statement, when the search
operation terminates without satisfying the condition specified
in any of the associated WHEN phrases.

• B l o c k

A physical unit of data that is normally composed of one or more
logical records. For mass storage files, a block may contain a portion
of a logical record. The size of a block has no direct relationship to
the size of the file within which the block is contained or to the size
of the logical record(s) that are either continued within the block or
that overlap the block. The term is synonymous with physical record.

• Called Program

A program that is the object of a CALL statement combined at object
time with the calling program to produce a run unit.

Calling Program

A program that executes a CALL to another program.

Clause

An ordered set of consecutive COBOL character-strings whose purpose is
to specify an attribute of an entry, or form a portion of a COBOL
procedural statement.

• Collating Sequence

The sequence in which the characters that are acceptable in a computer
are ordered for purposes of sorting, merging, and comparing.

First Edition

GLOSSARY

• Comment Line

A source program line represented by an asterisk in the indicator area
of the line and any characters from the computer's character set in
area A and area B of that line. The comment line serves only for
documentation in a program. A special form of comment line represented
by a slash (/) in the indicator area of the line and any characters
from the computer's character set in area A and area B of that line
causes page ejection prior to printing the comment.

Comment-entry
An entry in the IDENTIFICATION division that may be any combination of
characters from the computer character set.

Condition-name

A user-defined word assigned to a specific value, set of values, or
range of values, within the complete set of values that a conditional
variable may possess; or the user-defined word assigned to a status of
an implementor-defined switch or device. Condition-names are defined
with level-number 88.

Conditional Variable

A data item that has one or more values to which a condition-name is
assigned.

Current Record

The record that is available in the record area associated with the
fi l e .

Current Record Pointer

A conceptual entity that is used in the selection of the next record.

Data-description-entry
An entry in the DATA division that is composed of a level-number
followed by a data-name, if required, and then followed by a set of
data clauses, as required.

First Edition

DOC5039-184

Data-name
A user-defined word that names a data item described in a
description-entry in the DATA division. A data-name can
subscripted, indexed, or qualified unless these attr ibutes
specifically prohibited by the rules for that forme

Declarat ives

A set of one or more special-purpose sections, written at the beginning
of the PROCEDURE division, the first of which is preceded by the
keyword DECLARATIVES and the last of which is followed by the keywords
END DECLARATIVES. A declarative is composed of a section header,
followed by a USE sentence, followed by a set of zero, one, or more
associated paragraphs.

» Division Header

A combination of words followed by a period and a space that indicates
the beginning of a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRCNMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

• Dynamic Access

An access mode in which records can be obtained from or placed into a
mass storage file in a nonsequential manner (see Random Access) and
obtained from a file in a sequential manner (see Sequential Access),
during the scope of the same OPEN statement.

Editing Character

A single character or a fixed two-character combination used in a
PICTURE clause to change output format. Editing characters are listed
in the section PICTURE in Chapter 10.

Elementary Item

A data item that is described as not being further subdivided.

• F i l e - d e s c r i p t i o n - e n t r y

An entry in the FILE section of the DATA division that is composed of
the level indicator FD, followed by a file-name, and then followed by a
set of file clauses as required.

First Edition

GLOSSARY

File-name

A user-defined word that names a file described in a
file-description-entry or a sort-merge file-description-entry within
the FILE section of the DATA division.

• Imperative Statement

A statement that begins with an imperative verb and specifies an
unconditional action to be taken. An imperative statement may consist
of a sequence of imperative statements.

Index

1. A computer storage position or register, the contents of
which represent the identification of a particular element
in a table.

2. A key that identifies a record for the MIDAS+ or old MIDAS
u t i l i t y .

• Index Data Item

A data item in which the value associated with an index-name can be
stored.

• Index-name

A user-defined word that names an index associated with a specific
table.

• Input Procedure

A set of statements that are executed each time a record is released to
a sort file.

• Key

A data item that identifies the location of a record, or a set of data
items that serve to identify the ordering of data.

• Key of Reference

The key, either primary or alternate, currently being used to access
records within an indexed file.

First Edition

DOC5039-184

Level Indicator

Two alphabetic characters that identify a specific type of file or a
position in a hierarchy. A level indicator is found only in the DATA
division and must be one of the following: FD, SD.

Level-number

A user-defined word that indicates the position of a data item in the
hierarchical structure of a logical record or that indicates special
properties of a data-description-entry. A level-number is expressed as
a one- or two-digit number. Level-numbers in the range 1 through 49
indicate the position of a data item in the hierarchical structure of a
logical record. Level-numbers in the range 1 through 9 may be written
either as a single digit or as a zero followed by a significant digit.
Level-numbers 66, 77, and 88 identify a data-description-entry with
special properties.

Logical Operator
One of the reserved words AND, OR, or NOT. In the formation of a
condition, both or either of AND and OR can be used as logical
connectives. NOT can be used for logical negation.

Merge File
A collection of records to be merged by a MERGE statement. The merge
file, identified by SD, is created and can be used only by the merge
function.

+ or MI

u t i l i t y

Mnemonic-name

A user-defined word that is associated, in the SPECIAL-NAMES paragraph
of the ENVIRCNMENT division, with a specified implementor-name, such as
CONSOLE or a switch-name.

Native Character Set

First Edition

GLOSSARY

• Noncontiguous Items

Elementary data items, in the WORKING-STORAGE and LINKAGE sections,
that bear no hierarchic relationship to other data items.

Output Procedure

A set of statements to which control is given during execution of a
SORT statement after the sort function is completed, or during
execution of a MERGE statement after the merge function has selected
the next record in merged order.

Paragraph

In the PROCEDURE division, a paragraph-name followed by a period, a
space, and zero, one, or more sentences. In the IDENTIFICATION and
ENVIRONMENT divisions, a paragraph header followed by zero, one, or
more entries.

Paragraph Header

A reserved word, followed by a period and a space that indicates the
beginning of a paragraph in the IDENTIFICATION and ENVIRONMENT
divisions. The permissible paragraph headers are:

PROGRAM-ID.
AUTHOR.
REMARKS.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

Paragraph-name
A user-defined word that identifies and begins a paragraph in the
PROCEDURE Division. Paragraph-names must start in columns 8 through
11.

=i SStfte i?Miah ru«ursfai
UFD and sub-UFDs contai:

loS®=©1Sio*/ iLfe SSMfe isSSl©
iM°i ■}■•■-.

First Edition

DOC5039-184

Phrase

a phrase is an ordered set of one or more consecutive OOBOL
character-strings that form a portion of a OOBQL procedural statement
or of a OOBOL clause.

Primary Index

For MIDASPLUS, the primary record key or Relative Key.

Primary Record Key

A key whose contents uniquely identify a record within an indexed file,

Procedure-name

A paragraph-name in the PROCEDURE division (which may be qualified), or
a section-name in the PROCEDURE division.

Punctuation Character

A character that belongs to the following set:

It I / \ sb

• Qualified Data-name

An identifier that is composed of a data-name followed by OF or IN and
another data-name at a higher level of the same hierarchy. The second
data-name may also be qualified.

Q u a l i fi e r

1. A data-name that is used in a reference together with OF or
IN and another data-name at a lower level in the same
hierarchy.

2. A section-name that is used in a reference together with OF
or IN and a paragraph-name specified in that section.

3. A library-name that is used in a reference together with OF
or IN and a text-name associated with that library.

Random Access

An access mode in which the value of a key data item identifies the
record to be accessed in or written to a relative or indexed file.

First Edition

GLOSSARY

Record-description-entry
The total set of data-description-entries associated with a particular
record.

Reserved Word

A OOBOL word specified in the list of words in Table A-2 of Appendix A,
and which must not appear in the programs as a user-defined word.

Section-name

A user-defined word that names a section in the PROCEDURE Division.
Section-names must start within columns 8 through 11.

Sentence

A sequence of one or more statements, the last of which is terminated
by a period followed by a space.

Sequential Access

An access mode in which logical records are obtained from or placed
into a file in a consecutive sequence determined by the order of
records in the file.

• Sort File

A collection of records to be sorted by a SORT statement. The sort
file, identified by SD, is created and can be used by the sort function
only.

Sort-merge File-description-entry
An entry in the FILE section of the DATA division that is composed of
the level indicator SD, followed by a file-name, and then followed by a
set of file clauses as required.

First Edition

DOC5039-184

Statement
A syntactically valid combination of words and symbols written in the
PROCEDURE division, beginning with a verb.

Subscript

An integer whose value identifies a particular element in a table.

Table

A set of logically consecutive items, all of the same description, that
are defined in the DATA division with the OCCURS clause.

Table Element

A data item in a set of repeated items comprising a table.

Unary Operator

A plus or a minus sign that precedes a variable or a left parenthesis
in an arithmetic expression and that has the effect of multiplying the
expression by +1 or -1, respectively.

Word

In storage, 32 bits.

A OOBCL word is a character-string of not more than 30
characters chosen from the following set of 64 characters:

0 through 9 (digits)

I iflciuolr v /-);

Ml words except level-numbers, section-names,
segment-numbers, and paragraph-names must contain at least
one alphabetic character or a hyphen. A word must not
begin or end with a hyphen. It is delimited by a space, or
by proper punctuation. A word may contain more than one
embedded hyphen; consecutive embedded hyphens are also
permitted.

First Edition

Inde

-64V compile option 2-11

= (pseudo-text delimiter) 4-9,
8-18

Mphabetic item 4-20

Mphanumeric edited item 4-20,
7-28

Abbreviated combined conditions
4-44, 4-45

ACCEPT 8-8 to 8-10

ACCESS MODE:
general rules 12-7, 12-8
indexed files 12-7, 12-8
relative files 13-3, 13-7,

13-8

ADD 8-11, 8-12

Mgebraic signs 4-31

Mignment rules:
Prime extension 4-28 to 4-31

ALL literal 4-14

-ALLERRORS compile option 2-7

Mphabet-name M-l

Mphanumeric item 4-20, 7-29

ALTER 8-13

ALTERNATE REOORD KEY:
Prime extension 12-9
ru les 12-9

ANSI standard:
d e fi n i t i o n 1 - 1
levels of OOBOL C-l, C-2
Prime extension 1-1, 1-2, 1-2

to 1-4
Prime support 1-1, 1-2

Area A, Area B 4-7, 4-8

Arithmetic expressions:
definition 4-35, M-l
subscripts containing 10-20
table of symbol combinations

4-35
with SET 10-8

First Edition

DOC5039-184

Arithmetic operators 4-36,
4-37

Arithmetic statements 4-37,
4-38, 8-3 to 8-6

Arithmetic symbols A-3

ASCENDING KEY:
description 10-2 to 10-5
MERGE 8-47

ASCII character set and
collating sequence A-10 to

A-14

ASSIGN 6-7 to 6-9, 12-7

Assumed decimal point M-l

Aster isk :
comment line 4-7
PICTURE symbol 7-30

AT END condition:
d e fi n i t i o n M - 2
indexed files 12-4
relative files 13-4, 13-18

Batch environment 1-5

-BINARY compile option 2-10

Binary item 4-23, 4-24

BLANK WHEN ZERO 7-23

Block M-2

BLOCK CONTAINS 7-4, 7-7, 14-12

Blocking records 14-1, 14-12,
14-13

CALL:
format 9-5
rules 8-1, 8-2, 8-13, 8-14,

9-5, 9-6

Called program M-2

Calling program M-2

Calling programs in other
languages 9-1, 9-15, 9-16

Carriage control, integer values
8-102

Categories of data 4-20, 4-21

CBLLIB:
library files list F-l to F-2
overview 3-2 to 3-3
use in loading 3-2, 3-3

CBLSW 0 through 7 6-5

Character set:
ASCII A-9 to A-14
collating sequence 4-11
Prime COBOL 74 4-9, 4-10,

4-10
Prime extensions 4-11

Character strings 4-11

Class condition 4-40, 4-41

Classes of data 4-20, 4-21

Clause M-2

CLOSE:
format 8-14
indexed files 12-12
re la t ive fi les 13-12
tape processing 14-17

COBOL 74:
library (CBLLIB) 3-2, 3-3
library files list F-l to F-2
PRIME'S, overview 1-2, 1-3
reserved words A-6 to A-8
under PRIMOS 1-2, 1-3

CODE-SET 7-4, 7-8, 14-14

Coding:
column numbers 4-8
rules 4-7, 4-8
symbols A-2

Collating sequence 4-11, M-2

First Edition

INDEX

COLLATING SEQUENCE IS 11-6 to
11-8

Combined and negated combined
condi t ions 4-43

Comma 4-8

Command line options 2-2 to
2-13

Comment line M-3

Comment-entry 5-2, M-3

COMP 4-23, 4-24

OOMP-1 4-26 to 4-28

COMP-2 4-26 to 4-28

OOMP-3 4-23

Compiler-directing statements,
overview and verbs 8-3

Compiler:
command line format 2-1
command line options 2-2 to

2-13
error messages 2-17
table of command line options

2-3, 2-4
table of output options 2-16

Complex conditions 4-42

Composite of operands 8-4

COMPRESSED/UNCOMPRESSED 7-4 to
7-6

Compression control 7-6

COMPUTATIONAL 4-23, 4-24

COMPUTATIONAL-1 4-26 to 4-28

OOMPUTATIONAL-2 4-26 to 4-28

COMPUTATIONAL-3 4-23

COMPUTE -16, 8-17

COMPUTE CORRESPONDING 8-16,
8-17

Condition evaluation rules 4-45
to 4-47

Condition symbols A-3

Condition-name:
cond i t ion 4 -41
d e fi n i t i o n M - 3
overview 4-16
with level 88 7-19, 7-20

Conditional expressions:
abbreviated combined conditions

4-44, 4-45
class condition 4-40, 4-41
combined and negated combined

condi t ions 4-43
comparison of operands 4-37,

4-38
complex conditions 4-42
condition evaluation rules

4-45 to 4-47
condition-name condition 4-41
d e fi n i t i o n 4 - 3 8
multiple condit ions 4-44
negated simple conditions

4-42
relation condition 4-38 to

4-40
sign condition 4-42
switch-status condit ion 4-41

Conditional statements 8-3

Conditional variable 4-16,
7-20, 8-38, M-3

CONFIGURATION section:
descript ion 6-1, 6-2
overview 4-2

Connectives 4-13

CONSOLE IS 6-4

First Edition

DOC5039-184

Continuation of literals 4-19

Conventions of notation:
OOBQL 4-5, 4-6
Prime xiv, xv

Conversion from old to new Prime
OOBOL L-l

COPY 8-18 to 8-20

CORRESPONDING, rules 8-6

CREATK:
data subfile questions E-4
dia logs E-2
example, indexed files E-6
example, relative files E-12,

E-13
indexed files E-3 to E-5
relative (direct access) files

B-ll to E-13

CURRENCY SIGN 6-4

Currency symbol 7-30

Current record pointer:
d e fi n i t i o n M - 3
indexed files 12-3
overview 8-56
re la t i ve fi les 13-3
sequential files 8-70

Current record:
d e fi n i t i o n M - 3

Data alignment 4-28 to 4-31

Data categories:
characterist ics 4-20, 4-21
table of classes and categories

4-21

Data classes 4-20, 4-21

DATA division:
descr ip t ion 7 -1
example 7-52 to 7-54
fo rmat 7 -2
indexed sequential files

12-11
overview 4-2
re la t ive fi les 13-11

tape files 14-11 to 14-16

Data levels:
elementary item 4-19
group item 4-19

DATA REOORD 7-4, 7-5, 7-9,
11-5

Data representation and
alignment 4-22 to 4-31

Data type compatibility with
other languages 9-15, 9-16

Data-descr ipt ion-entry M-3

Data-name:
d e fi n i t i o n M - 4
formation 4-15, 4-16
overview 4-16
subscripting 10-19, 10-20
usage 7-22

DATE-COMPILED 5-2 to 5-3

-DEBUG compile option 2-11

Debugger:
compiling and loading D-l,

D-2
examples D-3 to D-4
overview 1-6, D-l
special definitions D-2, D-3

Decimal data type (overpunch
symbols) A-23

DECIMAL-POINT 6-4

Declarat ives M-4

DECLARATIVES section:
format 8-1, 8-2
overview 4-2
r u l e s 8 - 7

Default loading 3-1 to 3-3

Defaul ts :
ANSI notation 4-5, 4-6
Prime notation xiv

First Edition

INDEX

DELETE:
format 8-21, 12-13
rules 12-13, 13-13

DESCENDING KEY:
description 10-2 to 10-5
MERGE 8-47

Device-names, table of 6-8

Diagnostics (See Error
messages)

-DIAGSONLY compile option 2-11

Direct-access files (See
Relat ive files)

DISPLAY:
format 4-22, 7-43, 7-44
rules 8-22, 8-23

DIVIDE 8-24 to 8-26

Division header M-4

Divisions, COBOL program 4-1,
4-2

Double-precision floating-point
item 4-26 to 4-28

Dynamic access M-4

EBCDIC character set and
collating sequence A-15, A-16

Edit symbols in PICTURE clauses
A-4, A-5

Editing character M-4

Editing rules in PICTURE clauses
7-31 to 7-35

EDITOR, description 1-6

EJECT 8-27

Elementary item 4-19, M-4

Embedded signs A-23

END DECLARATIVES:
fo rmat 8 -1
rules 8-2, 8-6

ENTER 8-28, 9-7

ENVIRONMENT division:
example 6-12
format 6-1
overview 4-1
sort-merge module 11-2, 11-3

Error messages:
COBOL runtime error messages

B-2
compile time error messages

2-17, B-l, B-2
LOAD 3-5
LOAD (interdependent programs)

9-11
MIDASPLUS runtime error

messages B-2, B-3
PRIMOS error messages B-3
System runtime error messages

3-7
tape files 14-23 to 14-25

-ERRORFILE compile option 2-7

Executing programs:
interdependent programs 9-10
overview 3-5, 3-6

EXHIBIT 8-29

EXIT 8-30

EXIT PROGRAM 8-31, 9-8

-EXPLIST compile option 2-5

Exponentiation 4-26 to 4-28

FD (File Description) 7-4

Federal Information Processing
(FIPS) 2-7, C-l, C-2

Figurative constants 4-13,
4-14

File assignment for tape:
assignment error messages

14-6, 14-7

First Edit ion

DOC5039-184

examples, -OLD 14-6, K-3
tape file assignment format

K-4, 14-5
with -OLD 14-4, K-3
with normal 1-0 14-4

File assignment:
at runtime K-l to K-4
error messages 3-8, 3-9
in DATA division 7-13 to 7-15
with -OLD K-l to K-4

File Description (FD):
format 7-4
rules 7-3 to 7-5

FILE section:
format 7-3
func t i on 7 -3
overview 4-2
sort file description 11-5

File status codes:
all files A-17 to A-19
Prime-defined codes A-18,

A-19
with indexed files 12-3, 12-4
with relative files 13-3

FILE STATUS:
indexed files 12-3, 12-4
Prime extension 12-9
relative files 13-3, 13-4
ru les 12-9

File unit numbers, table 2-14

FILE-CONTROL:
format 6-7 to 6-9
indexed files 12-7 to 12-9
Prime extension, relative files

13-9
relative files 13-7 to 13-9
tape files 14-9, 14-10

F i le -descr ip t ion-ent ry M-4

File-names:
d e fi n i t i o n M - 5
normal naming 2-14
older naming convention 2-15
PRIMOS default names 2-15
ru les 4-16
table of default UFD's 2-15

FILLER, rules 7-22

-FIPS compile options 2-7, C-l

FIPS levels C-l, C-2

Fixed insertion 7-31, 7-32

Floating insertion 7-31 to
7-34

Floating-point data type 4-26
to 4-28

-FORCEBINARY compile topion
2-11

Format notation:
braces 4-6
brackets 4-6
e l l i p s i s 4 - 6
examples 4-6
level-numbers 4-5
list of ANSI notation 4-5,

4-6
punctuat ion 4-6
special characters 4-6

FORMS Management System 1-7

FORMS, description of 1-7

GIVING:
overview 8-4
rules 11-22, 11-23

GO TO 8-32/8-33

GO TO DEPENDING 8-32, 8-33

GOBACK 8-34, 9-9

Group item 4-19

-HELP compile option 2-13

-HEXADDRESS compile option 2-5

Hexadecimal addition table A-22

Hexadecimal and decimal
conversion A-21

First Edition

INDEX

HIGH-VALUE 4-14

I-0-CONTRQL:
format 6-10, 6-11
indexed files 12-10
re la t ive fi les 13-10
sort-merge program rules

11-3, 11-4
tape files 14-9

ID DIVISION (See
Ident ificat ion Div is ion)

IDENTIFICATION division:
desc r i p t i on 5 -1
example 5-4
overview 4-1
Prime extensions 5-1 to 5-3

Indexed sequential files:
access modes 12-3
error handling 12-6
file handling 12-5, 12-6
loading and executing programs

12-1
organ izat ion 12-2
overview 12-1
primary and secondary keys

12-2, 12-3
record handling 12-6
sample program 12-28 to 12-32

Indexing:
direct 4-34, 10-18
formats 4-34, 10-17
relative 4-34, 10-18
rules 4-34, 4-35

IF 8-35 to 8-38

IF OORR (See IF
CORRESPONDING)

IF CORRESPONDING 8-35, 8-37

-INPUT compile option 2-2

Input procedure M-5

INPUT PROCEDURE IS 11-20,
11-21

Imperative statements 8-3, M-5

Implementor-names 4-15

INPUT-OUTPUT section:
format 6-7
overview 4-2

Incompatibilities between
Prime's OOBOLs L-l

Input/Output handling, old COBOL
2-13

Index M-5

Index data item 4-35, M-5,
10-6

Input/Output statements,
permissib le A-20

INSPECT 8-38 to 8-46

Index item 4-24, 10-6

INDEX usage 4-24, 4-25, 7-43

Index-name M-5

INDEXED BY:
format 10-1, 10-7
general rules 10-2 to 10-4,

10-7

Indexed 1-0 module:
MIDASPLUS index 12-1
overview 12-1

Interactive environment 1-4,
1-5

Interprogram communication:
LINKAGE section 9-2, 9-3
overview 9-1
rules 9-2, 9-3
sample program 9-12 to 9-14

INVALID KEY condition:
indexed files 12-4
re la t i ve fi les 13 -4

JUSTIFIED 7-24

First Edition

DOC5039-184

KBUILD utility:
example, indexed files E-9 to

B-10
example, relative file E-15
funct ions E-3
indexed files E-8, E-9
overview E-3
relative files E-12, E-14

Key M-5

KEY data-names 11-7, 11-17,
11-18

Key of reference M-5

Keyed-index files, (See
MIDASPLUS)

Keywords 4-13

LABEL REOORDS:
general rules 7-4, 7-10

LABEL utility:
errors using LABEL 14-23 to

14-25
-HELP command 14-25
overview 14-22
using LABEL 14-22, 14-23

Language interfaces, Prime
high-level languages 1-7

Level indicator M-6

Level-number:
01 rules 7-17 to 7-19
66 rules 7-17, 7-20, 7-38,

7-39
77 rules 7-17 to 7-19, 7-48

to 7-51
88 rules 7-17 to 7-20, 7-45,

7-46
overview 4-5, 4-15, 4-15,

7-18 to 7-21, M-6

LI (load utility command) 3-2

L i b r a r i e s 1 - 6

LIBRARY (load utility command)
3-2

Library Module (See OOPY)

LINKAGE section:
format 7-50
overview 4-2
rules 7-50, 7-51, 8-2
syntax rules 9-2, 9-3

Linkage segment:
increase work space in 2-13

-LISTING compile option 2-5

L is t ing fi le :
contents 2-5
example 4-4, 4-5

L i t e r a l s :
continuation of 4-19
d e fi n i t i o n 4 - 1 7
nonnumeric l iterals 4-17,

4-18
numeric l i terals 4-18

-LNKWRK compile option 2-13

LOAD (SEG command) 3-1

SEG utility)

Loading programs:
error messages 3-5
examples 3-1 to 3-5
interdependent programs 9-10
SORT or MERGE 11-2, 11-26

Logical operator 4-42, M-6

LOW-VALUE 4-14

-MAP compile option:
example G-l to G-9
overview 2-6
showing alignment 4-30

-MAPWIDE compile option:
overview 2-6

Merge file M-6

MERGE:
d e fi n i t i o n M - 6
format 8-47

First Edition

INDEX

rules 11-6 to 11-9
sample program 11-9 to 11-11

MIDAS (See MIDASPLUS)

MIDASPLUS:
building a template E-1
definitions E-1, E-2, M-7
descript ion 1-6, 1-7

Mnemoni c-name:
d e fi n i t i o n M - 6
overview 4-16, 6-4

MOVE 8-48 to 8-51

Nines syndrome 4-28

-NOBINARY compile option 2-12

-NOCALCINDEX compile option
2-11

Noncontiguous data items 7-48,
7-49, M-7

-NOOPTIMIZE compile option 2-12

-NOOWNERID compile option 2-12

-NOSYNTAXMSG compile option 2-7

NOTE 8-54

MOVE OORR (See MOVE
CORRESPONDING)

MOVE CORRESPONDING 8-48, 8-50

Multidimensional tables 10-20

Multiple condit ions 4-44

MULTIPLY 8-52, 8-53

MULTIPLY OORR (See MULTIPLY
OORRESPONDING)

MULTIPLY OORRESPONDING 8-50,
8-53

Multivolume tape files 14-7

Native character set M-6

NCBLLIB 3-2

NCBLLIB:
l ibrary fi les l is t F- l to
F-2

Negated simple conditions 4-42

Nested IF:
d e fi n i t i o n 8 - 3 6
s t ruc tu re 8 -37

NEXT SENTENCE 8-35, 8-36

-^DTTYDIAGS 2-7

-NOTTYDIAGS compile option 2-7

Numeric edited item 4-20, 7-29

Numeric item 4-20, 7-29

Object code:
augmented 2-11 to 2-13
existence and properties of

2-10, 2-11

Object file, creation of 2-10
to 2-13

OBJECT-COMPUTER 6-1, 6-3

OCCURS:
descr ip t ion 7 -25
formats 10-2
general rules 10-4, 10-5
syntax rules 10-2, 10-3

Octal and decimal conversion
A-22

OFF STATUS 6-4, 6-5

-OFFSET compile option 2-6

-OLD compile option 2-13, L-l

ON SIZE ERROR 8-5

First Edition

DOC5039-184

ON STATUS 6-4, 6-5

OPEN:
format and rules 8-55 to 8-57
indexed files 12-14
relative files 13-14, 13-15
tape processing 14-18, 14-19

Operand combinations with SET
10-9

Operands:
comparison of 4-38 to 4-40
composite of 4-38, 8-4
floating point 4-26 to 4-28
overlapping 4-38

-OPTIMIZE compile option 2-12

ORGANIZATION IS INDEXED 12-7

Output procedure M-7

OUTPUT PROCEDURE IS:
format 8-47
rules 11-22, 11-23

Overpunch A-23

OWNER IS 7-4, 7-11

Packed decimal item 4-23

Paragraph M-7

Paragraph header M-7

Paragraph-name 4-17, M-8

Parentheses 4-8

Parity bit A-9, A-14

Pathname M-7

PERFORM 8-58 to 8-67

Period as separator 4-8

PFMS 6-8

Phantom environment 1-5

Phrase M-8

PIC 7-16, 7-26 to 7-30

PICTURE character string 7-26

Picture strings:
d e fi n i t i o n 4 - 11
ru les 7 -26

PICTURE:
alphabetic item 7-26, 7-31
alphanumeric edited item

7-28, 7-31
data categories 7-26, 7-28
editing rules 7-31 to 7-35
examples 7-27
function and rules 7-26
numeric edited item 7-28,

7-31
numeric item 7-28, 7-31
s i ze 7 -28
symbols 7-28 to 7-30

Primary index M-8

Primary record key M-8

Prime COBOL 74:
character set 4-9, 4-10
features available 1-1, 1-2
high and low values J-2
implementation-dependent

features, Rev. 18 J-l, J-2
maximum numbers J-2
maximum sizes J-l
system resources for 1-5 to

1-7

Prime extensions:
ACCESS MODE IS 12-27
alignment of substructures

4-29, 4-30
ALTERNATE REOORD KEY 12-9
arithmetic expressions with SET

8-81, 10-8
CALL 9-5
character set 4-11
COMP-3 4-23
OOMPRESSED/UNOOMPRESSED 7-5,

7-6
COMPUTE CORRESPONDING 8-16,

8-17
computer-name 6-2

First Edition

INDEX

condit ion-name 6-5
CCNFIGURATION section 6-2
CORRESPONDING 8-6
cross-reference l is t ing 2-7,

H-l to H-7
debugger D-l to D-4
device-names 6-8
DISPLAY...m ADVANCING 8-22
DIVIDE 8-25
EJECT 8-27
EXHIBIT NAMED 9-28
FD and SD, order of 7-2
FILE STATUS 12-9
file status codes A-17, A-18
FILLER 7-22
FIPS checking 2-7, C-l, C-2
floating-point item (COMP-1,

OOMP-2) 4-26 to 4-28
GO TO 8-32
GOBACK 8-33, 9-9
I-O-OONTROL 6-2
IF OORRESPONDING 8-35, 8-37
IF...THEN...OTHERWISE 8-35
LABEL REOORD 7-10
level-number 7-18, 7-19, 8-2
lcwercase letters 4-11
-MAP listing G-l to G-9
MOVE 8-48
MULTIPLY OORRESPONDING 8-53
NOTE 8-54
overview 1-1, 1-2
READY TRACE 8-71, 8-72
REOORD KEY 12-8
REDEFINES 7-36
relative files, FILE CONTROL

paragraph 13-9
REMARKS 5-2, 5-3
RESET TRACE 8-74
REWRITE 8-77, 12-19, 12-19,

13-19
SEEK 8-80, 8-80, 12-21, 13-21
single quote 4-11, 1-2
SKIP 8-82
SOURCE-COMPUTER,

OBJECT-COMPUTER 6-2, 6-3
subscript range checking 2-12
subscripting levels 10-20
subscripts containing

arithmetic expressions
4-33, 10-20
to ANSI notation 4-7
to ANSI standard, list 1-2 to

1-4
to IDENTIFICATION division

5-1 to 5-3
underscore in names 4-11
USAGE 7-43
USING 8-2
word formation 4-12
WRITE 8-101, 12-26, 13-25,

13-25

Prime restrictions:
computer-name 6-2
REOORD KEY 12-9
STRING
UNSTRING 8-96

PRIMOS:
compatibility of old and new

Prime COBOL 1-4
defin i t ion o f 1 -2
operating environment 1-4
PRIMOS-level commands 1-2,

1-3

Procedural sections, overview
4-2

PROCEDURE division:
arithmetic statements in I

to 8-6
example 8-104 to 8-109
formats 8-1, 8-2
interprogram communication

9-4
maximum size J-l
overview 4-2
re la t ive fi les 13-12
syntax rules 8-1 to 8-3

Procedure statements 8-7

Procedure-name M-8

-PRODUCTION compile option 2-12

Program environments, under
PRIMOS 1-4, 1-5

Program outline and example 4-3
to 4-5

Program statistics 2-8, 2-9

PROGRAM-ID 5-2

First Edit ion

DOC5039-184

Programmer-defined words 4-15
to 4-17

Pseudo-text 4-9, 8-18 to 8-20

Punctuation:
characters 4-8, 4-9, M-8
rules 4-8, 4-9
symbols list A-2

Qualification of names 4-31 to
4-33

Qualified data-name M-8

Qua l i fie r M-9

Quotation mark 4-8

QUOTES 4-14

Random access M-8

-RANGE compile option 2-12

READ:
indexed files 12-15 to 12-18
relative files 13-16 to 13-18
sequential files 8-68 to 8-70
tape processing 14-20

READY TRACE 8-71, 8-72

Receiving items 8-87, 8-93

REOORD CONTAINS 7-4, 7-12,
11-5

Record description:
d e fi n i t i o n M - 9
format 7-16, 7-17
indexed files 12-11
ru les 7-17

RECORD KEY:
general rules 12-8, 12-9
Prime extension 12-8
Prime restriction 12-9

REDEFINES:
example 7-37
rules 7-36, 7-37

Reference tables, list of A-1

Relation condition 4-38 to
4-40

Relat ive files:
(See also MIDASPLUS)
error handling 13-6
file handling 13-5
overview 13-1, 13-2
record handling 13-5, 13-6
RELATIVE KEY 13-1
sample program 13-27 to 13-31

Relative 1-0 module 13-1, 13-2

RELEASE:
format 8-73
general rules 11-13, 11-14
sample program 11-14

RENAMES 7-17, 7-38, 7-39

Repeat integer 7-28

RERUN 6-10, 12-10, 13-10,
14-19

Reserved words:
connectives 4-13
d e fi n i t i o n M - 9
figurative constants 4-13,

4-14
implementor-names 4-15
keywords 4-13
list A-6 to A-8
optional words 4-13
special-character words 4-14

RESET TRACE 8-74

RETURN 8-75, 11-15, 11-16

REWRITE:
format and rules 8-76, 8-77
indexed files 12-19, 12-20
Prime extension 12-19, 13-19
relative files 13-19, 13-20

-RMARGIN compile option 2-5

ROUNDED:
examples of results 8-5
r u l e s 8 - 4

First Edition

INDEX

Run unit M-9

Runfile M-9

Segment-number 4-17, 8-2

SELECT 6-7 to 6-9, 12-7

SAME REOORD AREA 12-10

Sample programs:
ACCEPT 8-10
CREATK E-6, E-7, E-12, E-13
DATA division 7-52 to 7-54
ENVIRCNMENT division 6-12
general outline 4-4 to 4-5
IDENTIFICATION division 5-4
indexed file 12-28 to 12-32
interprogram communication

9-12 to 9-14
KBUILD E-9, E-10, E-15
-MAP option G-3 to G-9
MERGE 11-9 to 11-12
PROCEDURE division 8-104 to

8-109
relative file 13-27 to 13-31
RELEASE 11-14
SORT 11-24 to 11-26
START 12-23, 12-24
STRING 8-88, 8-89
table handling 10-21 to 10-27
tape file 14-26 to 14-29
UNSTRING 8-10, 8-96
-XREFSORT option H-2 to H-7

Semicolon 4-8

Sending items 8-87, 8-93

Sentence M-9

Separators 4-8

Sequential access M-9

Sequential files:
CLOSE 8-14
DELETE 8-21
OPEN 8-55
READ 8-68 to 8-70
REWRITE: 8-76
WRITE 8-100

SET:
format 8-81, 10-8
rules 10-8, 10-9

Sign condition 4-42

Sign symbols and unary operators
A-3

SD file-name 11-5

SEARCH ALL:
format 8-78, 8-79, 10-10
rules 10-11 to 10-14

SEARCH:
example 10-12
flowchar t 10-15
format 8-78, 8-79, 10-10
rules 10-11 to 10-14

Section-names 4-17, M-9

Section:
format 8-1
rules 4-17, 8-2

SEEK 8-80, 12-21, 13-21

SBG (load utility):
d e fi n i t i o n 1 - 6
overview 3-1 to 3-3

SIGN:
representation 7-41
rules 7-40, 7-41

-SIGNALERRORS compile option
2-13

-SILENT compile option 2-7

-SILENT2 compile option 2-7

-SILENT3 compile option 2-8

Simple conditions 4-38

Simple insertion 7-31

Single-precision floating-point
item 4-26, 4-28

SIZE ERROR 8-5

First Edition

DOC5039-184

SKIP 8-82

-SLACKBYTES compile option 2-8,
4-30

Sort file M-9

Sort-merge file-description-
entry M-9

Sort-merge module:
d e fi n i t i o n 11 - 1
s t ra tegy 11-2

SORT:
format 8-83, 11-15
general rules 11-19, 11-20
sample program 11-24 to 11-26
strategy 11-1
syntax rules 11-18, 11-19

-SOURCE compile option 2-2

Source file 2-2

Source listing:
existence and contents of 2-5
options 2-2, 2-5

SOURCE-COMPUTER 6-1, 6-2

Space as separator 4-8, 4-9

SPACES 4-14

Special insertion 7-31, 7-32

SPECIAL-NAMES 6-1, 6-4 to 6-6

START:
format 8-84, 12-22, 13-22
indexed files 12-22 to 12-24
program sample 12-23, 12-24
relative files 13-22, 13-23

Statement definition 8-3, M-9

-STATISTICS compile option 2-9

STOP 8-85

STRING:
format 8-86
rules 8-86 to 8-88

sample program 8-88, 8-89

Subscript M-10

Subscripting:
data-names 10-19, 10-20
format 10-18
general rules 4-33, 10-19
l i tera ls 10-19

SUBTRACT 8-90, 8-91

Suppression editing 7-34, 7-35

Switch settings 3-6

Switch-names 6-5

Switch-status condition 4-41

SYNC 7-42

SYNCHRONIZED 7-42

Table M-10

Table element M-10

Table handling:
example of strategy 10-16,

10-17
overview 10-1
sample program 10-21 to 10-27

Tables, multidimensional 10-20

File assignment for tape)

Tape file-name format K-3

Tape processing:
blocking 14-1
DATA division 14-11 to 14-16
ENVIRONMENT division 14-9,

14-10
HELP facility of LABEL 14-25
multivolume 14-7
nonstandard labels 14-17
normal loading 14-2
older loading procedure 14-3
PROCEDURE division 14-17 to

14-21
sample program 14-26 to 14-29

First Edition

INDEX

tape drive assignments 14-3
tape structure 14-1

-TOTALS compile option 2-10

-TRUNCDIAGS compile option 2-10

UFD-name M-10

Unary operator M-10

Unpacked decimal item 4-22

UNSTRING:
format 8-92
rules 8-92 to 8-96
sample program 8-9, 8-96,

8-97

USAGE:
COMP 4-23, 4-24, 7-43, 7-44
COMP-1 4-26 to 4-28
OOMP-2 4-26 to 4-28
OOMP-3 4-23
COMPUTATIONAL 4-23, 4-24,

7-43, 7-44
OOMPUTATIONAL-1 4-26 to 4-28
OOMPUTATIONAL-2 4-26 to 4-28
OOMPUTATIONAL-3 4-23
data types 4-22
DISPLAY 4-22, 7-43, 7-44
INDEX 7-43, 10-6
index item 10-6
rules 7-43, 7-44

USE:
format 8-98
rules 8-98, 8-99

USING:
formats I
rules 8-1, 8-2, 11-20 to

11-21

VALUE 7-45 to 7-47

VALUE OF FILE-ID 7-4, 7-13 to
7-15, 14-15, 14-16

Word M-10

Word formation 4-12, M-10

WORKING-STORAGE SECTION:
format 7-48
overview 4-2, 7-1
rules 7-17, 7-48, 7-49

WRITE:
indexed files 12-26
Prime extension 12-26, 13-25
record keys 13-26
re la t ive fi les 13-25
rules 12-26, 12-27
sequential files 8-100 to

8-102
tape processing 14-21

-XREF compile option:
overview 2-6

-XREFSORT compile option:
overview 2-6
sample program H-l to H-7

Zero suppression 7-31, 7-34,
7-35

ZEROS 4-14

First Edition

READER RESPONSE FORM

DOG5039-184 COBOL 74 Reference Guide
Your feedback will help us continue to improve the quality, accuracy,
and organization of our user publications.

1. How do you rate the document for overall usefulness?

2. Please rate the document in the following areas:

Readability: hard to understand average

.about right

.very clear

too technical

..very good

3. What features did you find most useful?

4. What faults or errors gave you problems?

Would you like to be on a mailing list for Prime's
documentation catalog and ordering information? ves no

Name: Pos i t ion :

Company:

Address:

Zip:

	Front Cover
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	x
	About This Book
	xi
	xii
	xiii
	xiv
	xv
	Chapter 1
	Overview of Prime's COBOL 74
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Chapter 2
	Compiling the Program
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	Chapter 3
	Loading and Execuring Programs
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	Chapter 4
	Elements of Prime COBOL 74
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	Chapter 5
	The IDENTIFICATION DIVISION
	5-1
	5-2
	5-3
	5-4
	Chapter 6
	The ENVIRONMENT DIVISION
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	Chapter 7
	The DATA DIVISION
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	Chapter 8
	The PROCEDURE DIVISION
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	8-77
	8-78
	8-79
	8-80
	8-81
	8-82
	8-83
	8-84
	8-85
	8-86
	8-87
	8-88
	8-89
	8-90
	8-91
	8-92
	8-93
	8-94
	8-95
	8-96
	8-97
	8-98
	8-99
	8-100
	8-101
	8-102
	8-103
	8-104
	8-105
	8-106
	8-107
	8-108
	8-109
	Chapter 9
	Interprogram Communication
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	Chapter 10
	Table Handling
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	Chapter 11
	The Sort-Merge Module
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	Chapter 12
	Indexed Sequential Files
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	Chapter 13
	Relative Files
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	Chapter 14
	Tape Files
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	Appendixes
	Appendix A
	Reference Tables
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	Appendix B
	Error Messages
	B-1
	B-2
	B-3
	Appendix C
	FIPS Levels
	C-1
	C-2
	Appendix D
	The Debugger Interface
	D-1
	D-2
	D-3
	D-4
	Appendix E
	Creating Indexed and Relative Files: The MIDASPLUS Interface
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	E-8
	E-9
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	Appendix F
	COBOL 74 Library Files
	F-1
	F-2
	Appndix G
	The MAP Option
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	Appendix H
	The XREF Option
	H-1
	H-2
	H-3
	H-4
	H-5
	H-6
	H-7
	Appendix I
	Prime Support of the ANSI Standard
	I-1
	I-2
	I-3
	I-4
	Appendix J
	Implementation-dependent Features of Prime COBOL 74 in Rev. 18
	J-1
	J-2
	Appendix K
	File Assignments with -OLD
	K-1
	K-2
	K-3
	K-4
	K-5
	Appendix L
	Conversion Incompatibilities With Prime's Older COBOL: Rev. 18.4 and Higher
	L-1
	L-2
	Appendix M
	Glossary
	M-1
	M-2
	M-3
	M-4
	M-5
	M-6
	M-7
	M-8
	M-9
	M-10
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	Survey
	

